A322588 Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 for odd primes, and f(n) = A291750(n) for any other number.
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 21, 3, 32, 33, 34, 21, 35, 3, 36, 21, 37, 38, 39, 3, 40, 3, 29, 41, 42, 43, 44, 3, 45, 29, 44, 3, 46, 3, 47, 48, 49, 29, 50, 3, 51, 52, 53, 3, 54, 55, 56, 57, 58, 3, 59, 60, 40, 61, 44, 57, 62, 3, 63, 64, 65, 3, 66, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; A048250(n) = factorback(apply(p -> p+1,factor(n)[,1])); Aux322588(n) = if((n>2)&&isprime(n),0,(1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n))); v322588 = rgs_transform(vector(up_to, n, Aux322588(n))); A322588(n) = v322588[n];
Comments