cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322596 Square array read by descending antidiagonals (n >= 0, k >= 0): let b(n,k) = (n+k)!/((n+1)!*k!); then T(n,k) = b(n,k) if b(n,k) is an integer, and T(n,k) = floor(b(n,k)) + 1 otherwise.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 4, 7, 9, 7, 4, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 5, 12, 21, 26, 21, 12, 5, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 6, 19, 42, 66, 77, 66, 42, 19, 6, 1, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 1
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, T(n,k) is the number of nodes in n-dimensional space for Mysovskikh's cubature formula which is exact for any polynomial of degree k of n variables.

Examples

			Array begins:
  1, 1, 1,  1,  1,   1,   1,    1,    1,    1, ...
  1, 1, 2,  2,  3,   3,   4,    4,    5,    5, ...
  1, 1, 2,  4,  5,   7,  10,   12,   15,   19, ...
  1, 1, 3,  5,  9,  14,  21,   30,   42,   55, ...
  1, 1, 3,  7, 14,  26,  42,   66,   99,  143, ...
  1, 1, 4, 10, 21,  42,  77,  132,  215,  334, ...
  1, 1, 4, 12, 30,  66, 132,  246,  429,  715, ...
  1, 1, 5, 15, 42,  99, 215,  429,  805, 1430, ...
  1, 1, 5, 19, 55, 143, 334,  715, 1430, 2702, ...
  1, 1, 6, 22, 72, 201, 501, 1144, 2431, 4862, ...
  ...
As triangular array, this begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  1,  1;
  1, 2,  2,  1,  1;
  1, 3,  4,  3,  1,  1;
  1, 3,  5,  5,  3,  1,  1;
  1, 4,  7,  9,  7,  4,  1,  1;
  1, 4, 10, 14, 14, 10,  4,  1, 1;
  1, 5, 12, 21, 26, 21, 12,  5, 1, 1;
  1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1;
  ...
		

Crossrefs

Programs

  • Maxima
    b(n, k) := (n + k)!/((n + 1)!*k!)$
    T(n, k) := if integerp(b(n, k)) then b(n, k) else floor(b(n, k)) + 1$
    create_list(T(k, n - k), n, 0, 15, k, 0, n);