A322596 Square array read by descending antidiagonals (n >= 0, k >= 0): let b(n,k) = (n+k)!/((n+1)!*k!); then T(n,k) = b(n,k) if b(n,k) is an integer, and T(n,k) = floor(b(n,k)) + 1 otherwise.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 4, 7, 9, 7, 4, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 5, 12, 21, 26, 21, 12, 5, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 6, 19, 42, 66, 77, 66, 42, 19, 6, 1, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 1
Offset: 0
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ... 1, 1, 2, 4, 5, 7, 10, 12, 15, 19, ... 1, 1, 3, 5, 9, 14, 21, 30, 42, 55, ... 1, 1, 3, 7, 14, 26, 42, 66, 99, 143, ... 1, 1, 4, 10, 21, 42, 77, 132, 215, 334, ... 1, 1, 4, 12, 30, 66, 132, 246, 429, 715, ... 1, 1, 5, 15, 42, 99, 215, 429, 805, 1430, ... 1, 1, 5, 19, 55, 143, 334, 715, 1430, 2702, ... 1, 1, 6, 22, 72, 201, 501, 1144, 2431, 4862, ... ... As triangular array, this begins: 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 2, 2, 1, 1; 1, 3, 4, 3, 1, 1; 1, 3, 5, 5, 3, 1, 1; 1, 4, 7, 9, 7, 4, 1, 1; 1, 4, 10, 14, 14, 10, 4, 1, 1; 1, 5, 12, 21, 26, 21, 12, 5, 1, 1; 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1; ...
Links
- Ronald Cools, Encyclopaedia of Cubature Formulas
- Ivan P. Mysovskikh, On the construction of cubature formulae for very simple domains, USSR Computational Mathematics and Mathematical Physics, Volume 4, Issue 1, 1964, 1-17.
Crossrefs
Programs
-
Maxima
b(n, k) := (n + k)!/((n + 1)!*k!)$ T(n, k) := if integerp(b(n, k)) then b(n, k) else floor(b(n, k)) + 1$ create_list(T(k, n - k), n, 0, 15, k, 0, n);
Comments