cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322599 a(n) is the number of unlabeled rank-3 graded lattices with 4 coatoms and n atoms.

Original entry on oeis.org

1, 4, 13, 34, 68, 121, 197, 299, 432, 600, 806, 1055, 1352, 1698, 2100, 2561, 3085, 3675, 4338, 5074, 5891, 6790, 7777, 8854, 10029, 11300, 12677, 14160, 15756, 17465, 19297, 21249, 23332, 25544, 27894, 30381, 33016, 35794, 38728, 41815, 45065
Offset: 1

Views

Author

Jukka Kohonen, Dec 19 2018

Keywords

Examples

			a(2)=4: These are the four lattices.
    __o__        __o__       __o__       __o__
   / / \ \      / / \ \     / / \ \     / / \ \
  o o   o o     o o o o     o o o o     o o o o
   \_\ /_/|      \|/ \|      \|/  |     |/   \|
      o   o       o   o       o   o     o     o
       \ /         \ /         \ /       \_ _/
        o           o           o          o
		

Crossrefs

Fourth row of A300260.
Adjacent rows are A322598, A322600.

Formula

a(n) = (97/144)n^3 - (5/6)n^2 + [44/48, 47/48]n + [0, 13, 8, -45, 40, -19, 0, -5, 8, -27, 40, -37]/72. The value of the first bracket depends on whether n is even or odd. The value of the second bracket depends on whether (n mod 12) is 0, 1, 2, ..., 11.
Conjectures from Colin Barker, Dec 19 2018: (Start)
G.f.: x*(1 + 3*x + 8*x^2 + 17*x^3 + 21*x^4 + 21*x^5 + 16*x^6 + 7*x^7 + 3*x^8) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n>10.
(End)