cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322604 Factorial expansion of exp(gamma) = Sum_{n>=1} a(n)/n! with a(n) as large as possible.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 2, 4, 7, 5, 6, 5, 12, 1, 12, 9, 0, 7, 4, 14, 10, 17, 2, 14, 23, 4, 2, 2, 16, 2, 10, 18, 23, 26, 26, 26, 24, 1, 17, 26, 18, 12, 0, 15, 42, 34, 39, 33, 20, 18, 40, 43, 12, 47, 51, 10, 50, 35, 14, 23, 16, 1, 55, 41, 34, 29, 14, 41, 35, 60, 53, 45, 61, 35, 49, 73, 13, 13, 57, 59
Offset: 1

Views

Author

Tristan Cam, Dec 20 2018

Keywords

Comments

Gamma is the Euler-Mascheroni constant (A001620).

Examples

			exp(gamma) = 1 + 1/2! + 1/3! + 2/4! + 3/5! + 4/6! + 2/7! + 4/8! + ...
		

Crossrefs

Cf. A073004 (decimal expansion), A094644 (continued fraction), A001620 (Euler-Mascheroni constant).

Programs

  • Maple
    Digits:=200: a:=n->`if`(n=1,floor(exp(gamma)),floor(factorial(n)*exp(gamma))-n*floor(factorial(n-1)*exp(gamma))): seq(a(n),n=1..100); # Muniru A Asiru, Dec 20 2018
  • Mathematica
    With[{b = Exp[EulerGamma]}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = exp(Euler); for(n=1, 80, print1( if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))

Formula

Sum_{n>=1} a(n)/n! = exp(gamma) = A073004.