A322604 Factorial expansion of exp(gamma) = Sum_{n>=1} a(n)/n! with a(n) as large as possible.
1, 1, 1, 2, 3, 4, 2, 4, 7, 5, 6, 5, 12, 1, 12, 9, 0, 7, 4, 14, 10, 17, 2, 14, 23, 4, 2, 2, 16, 2, 10, 18, 23, 26, 26, 26, 24, 1, 17, 26, 18, 12, 0, 15, 42, 34, 39, 33, 20, 18, 40, 43, 12, 47, 51, 10, 50, 35, 14, 23, 16, 1, 55, 41, 34, 29, 14, 41, 35, 60, 53, 45, 61, 35, 49, 73, 13, 13, 57, 59
Offset: 1
Keywords
Examples
exp(gamma) = 1 + 1/2! + 1/3! + 2/4! + 3/5! + 4/6! + 2/7! + 4/8! + ...
Links
- Eric Weisstein's World of Mathematics, Harmonic Expansion
- Index entries for factorial base representation
Crossrefs
Programs
-
Maple
Digits:=200: a:=n->`if`(n=1,floor(exp(gamma)),floor(factorial(n)*exp(gamma))-n*floor(factorial(n-1)*exp(gamma))): seq(a(n),n=1..100); # Muniru A Asiru, Dec 20 2018
-
Mathematica
With[{b = Exp[EulerGamma]}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
-
PARI
default(realprecision, 250); b = exp(Euler); for(n=1, 80, print1( if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
Formula
Sum_{n>=1} a(n)/n! = exp(gamma) = A073004.
Comments