A322607 Numbers that can be expressed as the ratio between the product and the sum of consecutive squarefree numbers starting from 1.
1, 3080, 350350, 61850250, 17823180375, 6871260396000, 88909822914869880000, 2746644314348614680000, 2980109081068246927800000, 9638057975990853416623724908800000, 424217819372970387341691005411520000, 51912228216508515627667235880347808000000, 152157812632066726080765311397008321568000000
Offset: 1
Examples
1 is a term because 1/1 = (1*2*3)/(1+2+3) = 1. 3080 is a term because (1*2*3*5*6*7*10*11)/(1+2+3+5+6+7+10+11) = 138600/45 = 3080.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,n; a:=1; b:=0; c:=[]; for n from 1 to q do if issqrfree(n) then a:=a*n; b:=b+n; if frac(a/b)=0 then if n>1 then c:=[op(c),a/b]; fi; fi; fi; od; op(c); end: P(60);