A322608 Values of k such that (product of squarefree numbers <= k) / (sum of squarefree numbers <= k) is an integer.
1, 3, 11, 14, 17, 21, 23, 33, 34, 37, 46, 47, 55, 58, 59, 61, 62, 67, 69, 73, 82, 83, 87, 94, 95, 97, 101, 106, 107, 109, 114, 115, 119, 123, 127, 133, 134, 141, 146, 151, 157, 158, 159, 161, 165, 166, 173, 181, 187, 197, 202, 203, 210, 218, 219, 223, 226, 230
Offset: 1
Examples
3 is in the sequence because (1*2*3)/(1+2+3) = 1. 11 is in the sequence because (1*2*3*5*6*7*10*11)/(1+2+3+5+6+7+10+11) = 138600/45 = 3080.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,n; a:=1; b:=0; c:=[]; for n from 1 to q do if issqrfree(n) then a:=a*n; b:=b+n; if frac(a/b)=0 then c:=[op(c),n]; fi; fi; od; op(c); end: P(60);
-
Mathematica
seq = {}; sum = 0; prod = 1; Do[If[SquareFreeQ[n], sum += n; prod *= n; If[Divisible[prod, sum], AppendTo[seq, n]]], {n, 1, 230}]; seq (* Amiram Eldar, Mar 05 2021 *)
Extensions
Definition corrected by N. J. A. Sloane, Sep 19 2021 at the suggestion of Harvey P. Dale.
Comments