A322638 Numbers that are sums of consecutive centered pentagonal numbers (A005891).
0, 1, 6, 7, 16, 22, 23, 31, 47, 51, 53, 54, 76, 82, 98, 104, 105, 106, 127, 141, 158, 174, 180, 181, 182, 226, 233, 247, 264, 276, 280, 286, 287, 322, 323, 331, 374, 391, 405, 407, 421, 427, 428, 456, 502, 504, 526, 548, 555, 586, 601, 602, 607, 608, 609, 654, 681, 683, 722
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Centered Pentagonal Number
Programs
-
Maple
L:= [seq((5*n^2+5*n+2)/2,n=0..30)]: N:= L[-1]: S:=[0,op(ListTools:-PartialSums(L))]: R:=select(`<=`,{0,seq(seq(S[n]-S[m],m=1..n-1),n=1..nops(S))},N): sort(convert(R,list)); # Robert Israel, Mar 19 2023
-
Mathematica
terms = 59; nmax = 16; kmax = 9; (* empirical *) T = Table[(5n^2 + 5n + 2)/2, {n, 0, nmax}]; Union[{0}, T, Table[k MovingAverage[T, k], {k, 2, kmax}] // Flatten][[1 ;; terms]] (* Jean-François Alcover, Dec 26 2018 *)