cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322706 Regular triangle read by rows where T(n,k) is the number of k-regular k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 12, 12, 1, 0, 1, 70, 330, 70, 1, 0, 1, 465, 11205, 11205, 465, 1, 0, 1, 3507, 505505, 2531200, 505505, 3507, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is k-uniform if all edges contain exactly k vertices, and k-regular if all vertices belong to exactly k edges. The span of a hypergraph is the union of its edges.

Examples

			Triangle begins:
  1
  1       0
  1       1       0
  1       3       1       0
  1      12      12       1       0
  1      70     330      70       1       0
  1     465   11205   11205     465       1       0
  1    3507  505505 2531200  505505    3507       1       0
Row 4 counts the following hypergraphs:
  {{1}{2}{3}{4}}  {{12}{13}{24}{34}}  {{123}{124}{134}{234}}
                  {{12}{14}{23}{34}}
                  {{13}{14}{23}{24}}
		

Crossrefs

Row sums are A322705. Second column is A001205. Third column is A110101.

Programs

  • Mathematica
    Table[Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{k}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,n}],{n,1,6}]