cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322783 a(n) = 1 - n + (2^(n+2) - (-1)^n)/3.

Original entry on oeis.org

2, 3, 4, 9, 18, 39, 80, 165, 334, 675, 1356, 2721, 5450, 10911, 21832, 43677, 87366, 174747, 349508, 699033, 1398082, 2796183, 5592384, 11184789, 22369598, 44739219, 89478460, 178956945, 357913914, 715827855, 1431655736
Offset: 0

Views

Author

Paul Curtz, Dec 26 2018

Keywords

Comments

a(n) mod 10 = period 20: repeat [2, 3, 4, 9, 8, 9, 0, 5, 4, 5, 6, 1, 0, 1, 2, 7, 6, 7, 8, 3] = disordered [0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9].

Crossrefs

Programs

  • PARI
    Vec((2 - 3*x - 3*x^2 + 6*x^3) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 26 2018

Formula

a(n+1) - 2*(n) = -1, -2, 1, 0, 3, 2, 5, 4, ..., n >= 0.
a(n+1) - a(n) = A097074(n).
a(n+2) - 2*a(n+1) + a(n) = A097073(n+1).
From Colin Barker, Dec 26 2018: (Start)
G.f.: (2 - 3*x - 3*x^2 + 6*x^3) / ((1 - x)^2*(1 + x)*(1 - 2*x)).
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4) for n > 3.
(End)