A322791 Irregular triangle read by rows in which the n-th row lists the exponential divisors (or e-divisors) of n.
1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 12, 48, 7, 49
Offset: 1
Examples
The table starts 1 2 3 2, 4 5 6 7 2, 8 3, 9 10
Links
- Xiaodong Cao and Wenguang Zhai, Some arithmetic functions involving exponential divisors, Journal of Integer Sequences, Vol. 13, No. 2 (2010), Article 10.3.7.
- E. G. Straus and M. V. Subbarao, On exponential divisors, Duke Mathematical Journal, Vol. 41, No. 2 (1974), pp. 465-471, alternative link.
- Eric Weisstein's World of Mathematics, e-Divisor
Crossrefs
Programs
-
Maple
A322791 := proc(n) local expundivs ,d,isue,p,ai,bi; expudvs := {} ; for d in numtheory[divisors](n) do isue := true ; for p in numtheory[factorset](n) do ai := padic[ordp](n,p) ; bi := padic[ordp](d,p) ; if bi > 0 then if modp(ai,bi) <>0 then isue := false; end if; else isue := false ; end if; end do; if isue then expudvs := expudvs union {d} ; end if; end do: sort(expudvs) ; end proc: seq(op(A322791(n)),n=1..40) ; # R. J. Mathar, Mar 06 2023
-
Mathematica
divQ[n_, m_] := (n > 0 && m>0 && Divisible[n, m]); expDivQ[n_, d_] := Module[ {f=FactorInteger[n]}, And@@MapThread[divQ, {f[[;; , 2]], IntegerExponent[ d, f[[;; , 1]]]} ]]; expDivs[1]={1}; expDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; Table[expDivs[n], {n, 1, 50}] // Flatten
-
PARI
isexpdiv(f, d) = { my(e); for (i=1, #f~, e = valuation(d, f[i, 1]); if(!e || (e && f[i, 2] % e), return(0))); 1; } row(n) = {my(d = divisors(n), f = factor(n), ediv = []); if(n == 1, return([1])); for(i=2, #d, if(isexpdiv(f, d[i]), ediv = concat(ediv, d[i]))); ediv; } \\ Amiram Eldar, Mar 27 2023