A322795 Number of integers k, 0 <= k <= n, such that the Damerau-Levenshtein distance between the binary representations of n and k is strictly less than the Levenshtein distance.
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 1, 2, 0, 0, 0, 1, 0, 2, 1, 3, 0, 4, 4, 4, 1, 4, 2, 4, 0, 0, 0, 1, 0, 2, 1, 3, 0, 4, 5, 5, 1, 5, 4, 7, 0, 8, 9, 9, 6, 8, 8, 8, 1, 8, 8, 8, 2, 8, 4, 8, 0, 0, 0, 1, 0, 2, 1, 4, 0, 4, 6, 6, 1, 5, 4, 9, 0, 8, 11, 11, 7, 10, 11, 11, 1, 10, 12, 13, 5, 13, 9, 14, 0, 16, 18, 17, 15, 16
Offset: 0
Examples
For n = 6, the Damerau-Levenshtein distance and the Levenshtein distance between the binary representations of n and k are equal for all k <= n except k = 5. The Levenshtein distance between 101 and 110 (5 and 6 in binary) is 2, whereas the Damerau-Levenshtein distance is 1, so a(6) = 1.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 0..1000
- Wikipedia, Damerau-Levenshtein distance
Comments