cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322817 a(n) = A001222(A065642(n)) - A001222(n), where A065642(n) gives the next larger m that has same prime factors as n (ignoring multiplicity), and A001222 gives the number of prime factors, when counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 0, 1, 1, -1, 1, 2, 1, 1, 1, 1, 1, -1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 2, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2018

Keywords

Examples

			For n = 2 = 2^1, the next larger number with only 2's as its prime factors is 4 = 2^2, thus a(2) = 1.
For n = 12 = 2^2 * 3^1, the next larger number with the same prime factors is 18 = 2^1 * 3^2, with the same value of A001222, thus a(12) = 0.
For n = 40 = 2^3 * 5^1, the next larger number with the same prime factors is 50 = 2^1 * 5^2. While 40 has 3+1 = 4 prime factors in total, 50 has 1+2 = 3, thus a(40) = 3 - 4 = -1.
For n = 50, the next larger number with the same prime factors is 80 = 2^4 * 5^1, thus a(50) = (4+1)-(2+1) = 2.
		

Crossrefs

Programs

Formula

a(n) = A001222(A065642(n)) - A001222(n).