cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322818 a(n) = A001222(n) - A001222(A285328(n)), where A285328(n) gives the next smaller m that has same prime factors as n (ignoring multiplicity), or 1 if n is squarefree, and A001222 gives the number of prime factors, when counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, -1, 2, 1, 1, -1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 0, 1, 2, 3, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 0, 2, 1, 2, 2, 2, 1, 1, -1, 1, -1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2018

Keywords

Examples

			For n = 6 = 2*3, there is no smaller number with only the prime factors 2 and 3 as 6 is squarefree, thus A285328(6) = 1, and a(6) = A001222(6) = 2.
For n = 40 = 2^3 * 5^1, the next smaller number with the same prime factors is 20 = 2^2 * 5^1. While 40 has 3+1 = 4 prime factors in total, 20 has 2+1 = 3, thus a(40) = 4-3 = 1.
For n = 50 = 2^1 * 5^2, the next smaller number with the same prime factors is 40 = 2^3 * 5^1, thus a(50) = (1+2)-(3+1) = -1.
		

Crossrefs

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A322818(n) = (bigomega(n)-bigomega(A285328(n)));

Formula

a(n) = A001222(n) - A001222(A285328(n)).
a(A005117(n)) = A001222(A005117(n)).