A322833 Squarefree MM-numbers of strict uniform regular multiset multisystems. Squarefree numbers whose prime indices all have the same number of prime factors counted with multiplicity, and such that the product of the same prime indices is a power of a squarefree number.
1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 41, 43, 47, 51, 53, 55, 59, 67, 73, 79, 83, 85, 93, 97, 101, 103, 109, 113, 123, 127, 131, 137, 139, 149, 151, 155, 157, 161, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 227, 233, 241, 249, 255
Offset: 1
Keywords
Examples
The sequence of all strict uniform regular multiset multisystems, together with their MM-numbers, begins: 1: {} 59: {{7}} 157: {{12}} 269: {{2,8}} 2: {{}} 67: {{8}} 161: {{1,1},{2,2}} 271: {{1,10}} 3: {{1}} 73: {{2,4}} 163: {{1,8}} 277: {{17}} 5: {{2}} 79: {{1,5}} 165: {{1},{2},{3}} 283: {{18}} 7: {{1,1}} 83: {{9}} 167: {{2,6}} 293: {{1,11}} 11: {{3}} 85: {{2},{4}} 177: {{1},{7}} 295: {{2},{7}} 13: {{1,2}} 93: {{1},{5}} 179: {{13}} 311: {{1,1,1,1,1,1}} 15: {{1},{2}} 97: {{3,3}} 181: {{1,2,4}} 313: {{3,6}} 17: {{4}} 101: {{1,6}} 187: {{3},{4}} 317: {{1,2,5}} 19: {{1,1,1}} 103: {{2,2,2}} 191: {{14}} 327: {{1},{10}} 23: {{2,2}} 109: {{10}} 199: {{1,9}} 331: {{19}} 29: {{1,3}} 113: {{1,2,3}} 201: {{1},{8}} 335: {{2},{8}} 31: {{5}} 123: {{1},{6}} 205: {{2},{6}} 341: {{3},{5}} 33: {{1},{3}} 127: {{11}} 211: {{15}} 347: {{2,9}} 41: {{6}} 131: {{1,1,1,1,1}} 227: {{4,4}} 349: {{1,3,4}} 43: {{1,4}} 137: {{2,5}} 233: {{2,7}} 353: {{20}} 47: {{2,3}} 139: {{1,7}} 241: {{16}} 367: {{21}} 51: {{1},{4}} 149: {{3,4}} 249: {{1},{9}} 373: {{1,12}} 53: {{1,1,1,1}} 151: {{1,1,2,2}} 255: {{1},{2},{4}} 381: {{1},{11}} 55: {{2},{3}} 155: {{2},{5}} 257: {{3,5}} 389: {{4,5}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],And[SquareFreeQ[#],SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]
Comments