A321698 MM-numbers of uniform regular multiset multisystems. Numbers whose prime indices all have the same number of prime factors counted with multiplicity, and such that the product of the same prime indices is a power of a squarefree number.
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 41, 43, 47, 49, 51, 53, 55, 59, 64, 67, 73, 79, 81, 83, 85, 93, 97, 101, 103, 109, 113, 121, 123, 125, 127, 128, 131, 137, 139, 149, 151, 155, 157, 161, 163, 165, 167, 169, 177, 179
Offset: 1
Keywords
Examples
The sequence of all uniform regular multiset multisystems, together with their MM-numbers, begins: 1: {} 33: {{1},{3}} 109: {{10}} 2: {{}} 41: {{6}} 113: {{1,2,3}} 3: {{1}} 43: {{1,4}} 121: {{3},{3}} 4: {{},{}} 47: {{2,3}} 123: {{1},{6}} 5: {{2}} 49: {{1,1},{1,1}} 125: {{2},{2},{2}} 7: {{1,1}} 51: {{1},{4}} 127: {{11}} 8: {{},{},{}} 53: {{1,1,1,1}} 128: {{},{},{},{},{},{}} 9: {{1},{1}} 55: {{2},{3}} 131: {{1,1,1,1,1}} 11: {{3}} 59: {{7}} 137: {{2,5}} 13: {{1,2}} 64: {{},{},{},{},{},{}} 139: {{1,7}} 15: {{1},{2}} 67: {{8}} 149: {{3,4}} 16: {{},{},{},{}} 73: {{2,4}} 151: {{1,1,2,2}} 17: {{4}} 79: {{1,5}} 155: {{2},{5}} 19: {{1,1,1}} 81: {{1},{1},{1},{1}} 157: {{12}} 23: {{2,2}} 83: {{9}} 161: {{1,1},{2,2}} 25: {{2},{2}} 85: {{2},{4}} 163: {{1,8}} 27: {{1},{1},{1}} 93: {{1},{5}} 165: {{1},{2},{3}} 29: {{1,3}} 97: {{3,3}} 167: {{2,6}} 31: {{5}} 101: {{1,6}} 169: {{1,2},{1,2}} 32: {{},{},{},{},{}} 103: {{2,2,2}} 177: {{1},{7}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],And[SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]
Comments