cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322847 Numbers whose prime indices have no equivalent primes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2018

Keywords

Comments

The complement is {13, 26, 29, 43, 47, 52, 58, 73, 79, 86, 94, ...}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
In an integer partition, two primes are equivalent if each part has in its prime factorization the same multiplicity of both primes. For example, in (6,5) the primes {2,3} are equivalent while {2,5} and {3,5} are not. In (30,6) also, the primes {2,3} are equivalent, while {2,5} and {3,5} are not.
Also MM-numbers of T_0 multiset multisystems. A multiset multisystem is a finite multiset of finite multisets. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. The dual of a multiset multisystem has, for each vertex, one block consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict (no repeated parts).

Examples

			The prime indices of 339 are {2, 30}, in which the primes {3,5} are equivalent, so 339 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Select[Range[100],UnsameQ@@dual[primeMS/@primeMS[#]]&]