A330098
Number of distinct multisets of multisets that can be obtained by permuting the vertices of the multiset of multisets with MM-number n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1
The vertex-permutations of {{1,2},{2,3,3}} are:
{{1,2},{1,3,3}}
{{1,2},{2,3,3}}
{{1,3},{1,2,2}}
{{1,3},{2,2,3}}
{{2,3},{1,1,2}}
{{2,3},{1,1,3}}
so a(4927) = 6.
Cf.
A001055,
A003238,
A007716,
A055621,
A056239,
A112798,
A302242,
A303975,
A322847,
A330194,
A330218,
A330223,
A330227,
A330236.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
Table[Length[graprms[primeMS/@primeMS[n]]],{n,100}]
A330227
Number of non-isomorphic fully chiral multiset partitions of weight n.
Original entry on oeis.org
1, 1, 2, 7, 16, 49, 144, 447, 1417, 4707
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 16 multiset partitions:
{1} {11} {111} {1111}
{1}{1} {122} {1222}
{1}{11} {1}{111}
{1}{22} {11}{11}
{2}{12} {1}{122}
{1}{1}{1} {1}{222}
{1}{2}{2} {12}{22}
{1}{233}
{2}{122}
{1}{1}{11}
{1}{1}{22}
{1}{2}{22}
{1}{3}{23}
{2}{2}{12}
{1}{1}{1}{1}
{1}{2}{2}{2}
MM-numbers of these multiset partitions are the odd terms of
A330236.
Non-isomorphic costrict (or T_0) multiset partitions are
A316980.
Non-isomorphic achiral multiset partitions are
A330223.
BII-numbers of fully chiral set-systems are
A330226.
Fully chiral partitions are counted by
A330228.
Fully chiral covering set-systems are
A330229.
Fully chiral factorizations are
A330235.
A330232
MM-numbers of achiral multisets of multisets.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 72, 73, 76, 79, 80
Offset: 1
The sequence of non-achiral multisets of multisets (the complement of this sequence) together with their MM-numbers begins:
35: {{2},{1,1}}
37: {{1,1,2}}
39: {{1},{1,2}}
45: {{1},{1},{2}}
61: {{1,2,2}}
65: {{2},{1,2}}
69: {{1},{2,2}}
70: {{},{2},{1,1}}
71: {{1,1,3}}
74: {{},{1,1,2}}
75: {{1},{2},{2}}
77: {{1,1},{3}}
78: {{},{1},{1,2}}
87: {{1},{1,3}}
89: {{1,1,1,2}}
90: {{},{1},{1},{2}}
The fully-chiral version is
A330236.
Achiral set-systems are counted by
A083323.
MG-numbers of planted achiral trees are
A214577.
MM-numbers of costrict (or T_0) multisets of multisets are
A322847.
BII-numbers of achiral set-systems are
A330217.
Non-isomorphic achiral multiset partitions are
A330223.
Achiral integer partitions are counted by
A330224.
Achiral factorizations are
A330234.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]]
Select[Range[100],Length[graprms[primeMS/@primeMS[#]]]==1&]
A330230
Least MM-number of a multiset of multisets with n distinct representatives obtainable by permuting the vertices.
Original entry on oeis.org
1, 35, 141, 1713, 28011, 355
Offset: 1
The sequence of terms together with their corresponding multisets of multisets begins:
1: {}
35: {{2},{1,1}}
141: {{1},{2,3}}
1713: {{1},{2,3,4}}
28011: {{1},{2,3,4,5}}
355: {{2},{1,1,3}}
Positions of first appearances in
A330098.
MM-numbers of achiral multisets of multisets are
A330232.
MM-numbers of fully-chiral multisets of multisets are
A330236.
Cf.
A001055,
A003238,
A007716,
A056239,
A112798,
A302242,
A303975,
A322847,
A330103,
A330223,
A330227,
A330231,
A330236.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]];
dv=Table[Length[graprms[primeMS/@primeMS[n]]],{n,1000}];
Table[Position[dv,i][[1,1]],{i,First[Split[Union[dv],#1+1==#2&]]}]
A330228
Number of fully chiral integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 9, 12, 18, 25, 33, 45, 61, 80, 106, 140, 176, 232, 293, 381, 476, 615, 764, 975, 1191, 1511, 1849, 2322, 2812, 3517, 4231, 5240, 6297, 7736, 9260, 11315, 13468, 16378, 19485, 23531, 27851, 33525, 39585, 47389, 55844, 66517, 78169, 92810
Offset: 0
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (33) (7)
(11) (21) (22) (41) (42) (43)
(111) (31) (221) (51) (322)
(211) (311) (222) (331)
(1111) (2111) (411) (421)
(11111) (2211) (511)
(3111) (2221)
(21111) (4111)
(111111) (22111)
(31111)
(211111)
(1111111)
The Heinz numbers of these partitions are given by
A330236.
Costrict (or T_0) partitions are
A319564.
BII-numbers of fully chiral set-systems are
A330226.
Non-isomorphic, fully chiral multiset partitions are
A330227.
Fully chiral covering set-systems are
A330229.
Fully chiral factorizations are
A330235.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
Table[Length[Select[IntegerPartitions[n],Length[graprms[primeMS/@#]]==Length[Union@@primeMS/@#]!&]],{n,0,15}]
A330233
Least MM-numbers of multisets of multisets with a given number of distinct representatives (obtainable by vertex-permutations).
Original entry on oeis.org
1, 35, 141, 1713, 28011, 355, 34567, 4045, 54849, 64615, 15265, 95363, 126841
Offset: 1
The sequence of terms together with their corresponding multisets of multisets begins:
1: {}
35: {{2},{1,1}}
141: {{1},{2,3}}
355: {{2},{1,1,3}}
1713: {{1},{2,3,4}}
4045: {{2},{1,1,3,4}}
15265: {{2},{1,4},{1,1,3}}
28011: {{1},{2,3,4,5}}
34567: {{1,2},{3,4,5}}
54849: {{1},{2,3},{4,5}}
64615: {{2},{1,1,3,4,5}}
95363: {{2,3},{1,1,4,5}}
126841: {{3},{1,2},{1,4,5}}
Sorted positions of first appearances in
A330098.
MM-numbers of achiral multisets of multisets are
A330232.
MM-numbers of fully-chiral multisets of multisets are
A330236.
Cf.
A001055,
A003238,
A007716,
A056239,
A112798,
A302242,
A303975,
A322847,
A330103,
A330223,
A330227,
A330231.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]];
dv=Table[Length[graprms[primeMS/@primeMS[n]]],{n,1000}];
Table[Position[dv,i][[1,1]],{i,First/@Gather[dv]}]
A322912
Number of integer partitions of n whose parts are all powers of the same squarefree number.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 11, 15, 17, 23, 24, 33, 34, 42, 46, 56, 57, 71, 72, 88, 93, 109, 110, 134, 136, 158, 163, 191, 192, 229, 230, 266, 273, 311, 315, 370, 371, 419, 428, 491, 492, 565, 566, 642, 654, 730, 731, 836, 838, 936
Offset: 0
The a(1) = 1 through a(8) = 15 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (71)
(211) (311) (51) (421) (422)
(1111) (2111) (222) (511) (611)
(11111) (411) (2221) (2222)
(2211) (4111) (3311)
(3111) (22111) (4211)
(21111) (31111) (5111)
(111111) (211111) (22211)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
Cf.
A000961,
A005117,
A018819,
A023893,
A052410,
A072720,
A072721,
A072774,
A302593,
A322847,
A322900,
A322901,
A322911.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
Table[Length[Select[IntegerPartitions[n],And[And@@powsqfQ/@#,SameQ@@radbase/@DeleteCases[#,1]]&]],{n,30}]
A322911
Numbers whose prime indices are all powers of the same squarefree number.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 72, 73, 76, 79, 80, 81, 82, 83, 84, 86, 88, 92
Offset: 1
The prime indices of 756 are {1,1,2,2,2,4}, which are all powers of 2, so 756 belongs to the sequence.
The prime indices of 841 are {10,10}, which are all powers of 10, so 841 belongs to the sequence.
The prime indices of 2645 are {3,9,9}, which are all powers of 3, so 2645 belongs to the sequence.
The prime indices of 3178 are {1,4,49}, which are all powers of squarefree numbers but not of the same squarefree number, so 3178 does not belong to the sequence.
The prime indices of 30599 are {12,144}, which are all powers of the same number 12, but this number is not squarefree, so 30599 does not belong to the sequence.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (3,2), (3,2,1), (5,2), (4,3), (6,2), (3,2,2), (7,2), (5,3), (3,2,1,1), (6,3), (5,2,1), (9,2), (4,3,1), (3,3,2), (5,4), (6,2,1), (7,3), (10,2), (3,2,2,1), (6,4), (11,2), (8,3), (5,2,2).
Cf.
A000688,
A000961,
A001597,
A005117,
A023893,
A052410,
A056239,
A072720,
A072774,
A302242,
A302593,
A318400,
A322847,
A322901,
A322912.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
sqfker[n_]:=Times@@First/@FactorInteger[n];
Select[Range[100],And[And@@powsqfQ/@primeMS[#],SameQ@@sqfker/@DeleteCases[primeMS[#],1]]&]
A322846
Squarefree numbers whose prime indices have no equivalent primes.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 22, 23, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 46, 51, 53, 55, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 74, 77, 78, 82, 83, 85, 87, 89, 91, 93, 95, 97, 102, 103, 105, 106, 107, 109, 110, 111, 114, 115, 118, 119
Offset: 1
The sequence of all strict T_0 multiset multisystems together with their MM-numbers begins:
1: {}
2: {{}}
3: {{1}}
5: {{2}}
6: {{},{1}}
7: {{1,1}}
10: {{},{2}}
11: {{3}}
14: {{},{1,1}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
35: {{2},{1,1}}
37: {{1,1,2}}
38: {{},{1,1,1}}
39: {{1},{1,2}}
Cf.
A000009,
A005117,
A056239,
A059201,
A112798,
A302242,
A302505,
A316978,
A316979,
A316983,
A319558,
A319564,
A319728,
A322847.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Select[Range[100],And[SquareFreeQ[#],UnsameQ@@dual[primeMS/@primeMS[#]]]&]
Showing 1-9 of 9 results.
Comments