A322912
Number of integer partitions of n whose parts are all powers of the same squarefree number.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 11, 15, 17, 23, 24, 33, 34, 42, 46, 56, 57, 71, 72, 88, 93, 109, 110, 134, 136, 158, 163, 191, 192, 229, 230, 266, 273, 311, 315, 370, 371, 419, 428, 491, 492, 565, 566, 642, 654, 730, 731, 836, 838, 936
Offset: 0
The a(1) = 1 through a(8) = 15 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (71)
(211) (311) (51) (421) (422)
(1111) (2111) (222) (511) (611)
(11111) (411) (2221) (2222)
(2211) (4111) (3311)
(3111) (22111) (4211)
(21111) (31111) (5111)
(111111) (211111) (22211)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
Cf.
A000961,
A005117,
A018819,
A023893,
A052410,
A072720,
A072721,
A072774,
A302593,
A322847,
A322900,
A322901,
A322911.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
Table[Length[Select[IntegerPartitions[n],And[And@@powsqfQ/@#,SameQ@@radbase/@DeleteCases[#,1]]&]],{n,30}]
A322968
Number of integer partitions of n with no ones whose parts are all powers of the same squarefree number.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 9, 1, 8, 4, 10, 1, 14, 1, 16, 5, 16, 1, 24, 2, 22, 5, 28, 1, 37, 1, 36, 7, 38, 4, 55, 1, 48, 9, 63, 1, 73, 1, 76, 12, 76, 1, 105, 2, 98, 11, 116, 1, 128, 5, 143, 14, 142, 1, 186, 1, 168, 18, 202, 5, 223, 1, 240, 17, 247, 1, 305, 1, 286, 23
Offset: 0
The a(2) = 1 through a(12) = 9 integer partitions (A = 10, B = 11):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (66)
(22) (33) (44) (333) (55) (84)
(42) (422) (82) (93)
(222) (2222) (442) (444)
(4222) (822)
(22222) (3333)
(4422)
(42222)
(222222)
The a(20) = 16 integer partitions:
(10,10), (16,4),
(8,8,4), (16,2,2),
(5,5,5,5), (8,4,4,4), (8,8,2,2),
(4,4,4,4,4), (8,4,4,2,2),
(4,4,4,4,2,2), (8,4,2,2,2,2),
(4,4,4,2,2,2,2), (8,2,2,2,2,2,2),
(4,4,2,2,2,2,2,2),
(4,2,2,2,2,2,2,2,2),
(2,2,2,2,2,2,2,2,2,2).
Cf.
A001597,
A005117,
A018819,
A023893,
A052410,
A072720,
A072721,
A072774,
A102430,
A322900,
A322903,
A322911,
A322912,
A379957.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],And@@powsqfQ/@#,SameQ@@radbase/@#]&]],{n,30}]
-
a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&issquarefree(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
-
seq(n)={Vec(1 + sum(d=2, n, if(issquarefree(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025
Showing 1-2 of 2 results.
Comments