A072720
Number of partitions of n into parts which are each powers of a single number (which may vary between partitions).
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 11, 15, 17, 23, 24, 34, 35, 43, 47, 57, 58, 73, 74, 91, 96, 112, 113, 139, 141, 163, 168, 197, 198, 235, 236, 272, 279, 317, 321, 378, 379, 427, 436, 501, 502, 575, 576, 653, 666, 742, 743, 851, 853, 952, 963, 1080, 1081, 1211, 1216, 1361
Offset: 0
a(6)=10 since 6 can be written as 6 (powers of 6), 5+1 (5), 4+1+1 (4 or 2), 3+3 (3), 3+1+1+1 (3), 4+2 (2), 2+2+2 (2), 2+2+1+1 (2), 2+1+1+1+1 (2) and 1+1+1+1+1+1 (powers of anything).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(1) = 1 through a(8) = 15 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (71)
(211) (311) (51) (421) (422)
(1111) (2111) (222) (511) (611)
(11111) (411) (2221) (2222)
(2211) (4111) (3311)
(3111) (22111) (4211)
(21111) (31111) (5111)
(111111) (211111) (22211)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
Table[Length[Select[IntegerPartitions[n],SameQ@@radbase/@DeleteCases[#,1]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
A322968
Number of integer partitions of n with no ones whose parts are all powers of the same squarefree number.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 9, 1, 8, 4, 10, 1, 14, 1, 16, 5, 16, 1, 24, 2, 22, 5, 28, 1, 37, 1, 36, 7, 38, 4, 55, 1, 48, 9, 63, 1, 73, 1, 76, 12, 76, 1, 105, 2, 98, 11, 116, 1, 128, 5, 143, 14, 142, 1, 186, 1, 168, 18, 202, 5, 223, 1, 240, 17, 247, 1, 305, 1, 286, 23
Offset: 0
The a(2) = 1 through a(12) = 9 integer partitions (A = 10, B = 11):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (66)
(22) (33) (44) (333) (55) (84)
(42) (422) (82) (93)
(222) (2222) (442) (444)
(4222) (822)
(22222) (3333)
(4422)
(42222)
(222222)
The a(20) = 16 integer partitions:
(10,10), (16,4),
(8,8,4), (16,2,2),
(5,5,5,5), (8,4,4,4), (8,8,2,2),
(4,4,4,4,4), (8,4,4,2,2),
(4,4,4,4,2,2), (8,4,2,2,2,2),
(4,4,4,2,2,2,2), (8,2,2,2,2,2,2),
(4,4,2,2,2,2,2,2),
(4,2,2,2,2,2,2,2,2),
(2,2,2,2,2,2,2,2,2,2).
Cf.
A001597,
A005117,
A018819,
A023893,
A052410,
A072720,
A072721,
A072774,
A102430,
A322900,
A322903,
A322911,
A322912,
A379957.
-
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],And@@powsqfQ/@#,SameQ@@radbase/@#]&]],{n,30}]
-
a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&issquarefree(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
-
seq(n)={Vec(1 + sum(d=2, n, if(issquarefree(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025
A322911
Numbers whose prime indices are all powers of the same squarefree number.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 72, 73, 76, 79, 80, 81, 82, 83, 84, 86, 88, 92
Offset: 1
The prime indices of 756 are {1,1,2,2,2,4}, which are all powers of 2, so 756 belongs to the sequence.
The prime indices of 841 are {10,10}, which are all powers of 10, so 841 belongs to the sequence.
The prime indices of 2645 are {3,9,9}, which are all powers of 3, so 2645 belongs to the sequence.
The prime indices of 3178 are {1,4,49}, which are all powers of squarefree numbers but not of the same squarefree number, so 3178 does not belong to the sequence.
The prime indices of 30599 are {12,144}, which are all powers of the same number 12, but this number is not squarefree, so 30599 does not belong to the sequence.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (3,2), (3,2,1), (5,2), (4,3), (6,2), (3,2,2), (7,2), (5,3), (3,2,1,1), (6,3), (5,2,1), (9,2), (4,3,1), (3,3,2), (5,4), (6,2,1), (7,3), (10,2), (3,2,2,1), (6,4), (11,2), (8,3), (5,2,2).
Cf.
A000688,
A000961,
A001597,
A005117,
A023893,
A052410,
A056239,
A072720,
A072774,
A302242,
A302593,
A318400,
A322847,
A322901,
A322912.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
sqfker[n_]:=Times@@First/@FactorInteger[n];
Select[Range[100],And[And@@powsqfQ/@primeMS[#],SameQ@@sqfker/@DeleteCases[primeMS[#],1]]&]
Showing 1-3 of 3 results.
Comments