cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A330098 Number of distinct multisets of multisets that can be obtained by permuting the vertices of the multiset of multisets with MM-number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
a(n) is a divisor of A303975(n)!.

Examples

			The vertex-permutations of {{1,2},{2,3,3}} are:
  {{1,2},{1,3,3}}
  {{1,2},{2,3,3}}
  {{1,3},{1,2,2}}
  {{1,3},{2,2,3}}
  {{2,3},{1,1,2}}
  {{2,3},{1,1,3}}
so a(4927) = 6.
		

Crossrefs

Positions of 1's are A330232.
Positions of first appearances are A330230 and A330233.
The BII-number version is A330231.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[graprms[primeMS/@primeMS[n]]],{n,100}]

A330103 Numbers whose prime-indices do not have weakly increasing numbers of prime factors, counted with multiplicity.

Original entry on oeis.org

77, 119, 154, 217, 221, 231, 238, 287, 308, 357, 385, 403, 413, 434, 437, 442, 462, 469, 476, 533, 539, 551, 574, 581, 589, 595, 616, 651, 663, 693, 713, 714, 763, 767, 770, 779, 806, 817, 826, 833, 847, 861, 868, 871, 874, 884, 889, 893, 899, 924, 938
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their corresponding multisets of multisets begins:
   77: {{1,1},{3}}
  119: {{1,1},{4}}
  154: {{},{1,1},{3}}
  217: {{1,1},{5}}
  221: {{1,2},{4}}
  231: {{1},{1,1},{3}}
  238: {{},{1,1},{4}}
  287: {{1,1},{6}}
  308: {{},{},{1,1},{3}}
  357: {{1},{1,1},{4}}
  385: {{2},{1,1},{3}}
For example, 385 has prime indices {3,4,5} with numbers of prime factors (1,2,1), which is not weakly increasing, so 385 is in the sequence.
		

Crossrefs

The version where prime factors are counted without multiplicity is A330281.

Programs

  • Mathematica
    Select[Range[1000],!OrderedQ[PrimeOmega/@PrimePi/@First/@FactorInteger[#]]&]

Extensions

Term 667 deleted by Gus Wiseman, Feb 07 2021

A330223 Number of non-isomorphic achiral multiset partitions of weight n.

Original entry on oeis.org

1, 1, 4, 5, 12, 9, 30, 17, 52, 44, 94, 58, 211, 103, 302, 242, 552, 299, 1024, 492, 1592, 1007, 2523, 1257, 4636, 2000, 6661, 3705, 10823, 4567, 18147, 6844, 26606, 12272, 40766, 15056, 67060, 21639, 95884, 37357, 146781, 44585, 230098, 63263, 330889, 106619, 491182, 124756
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2019

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets. It is achiral if it is not changed by any permutation of the vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 multiset partitions:
  {1}  {11}    {111}      {1111}        {11111}
       {12}    {123}      {1122}        {12345}
       {1}{1}  {1}{11}    {1234}        {1}{1111}
       {1}{2}  {1}{1}{1}  {1}{111}      {11}{111}
               {1}{2}{3}  {11}{11}      {1}{1}{111}
                          {11}{22}      {1}{11}{11}
                          {12}{12}      {1}{1}{1}{11}
                          {1}{1}{11}    {1}{1}{1}{1}{1}
                          {1}{2}{12}    {1}{2}{3}{4}{5}
                          {1}{1}{1}{1}
                          {1}{1}{2}{2}
                          {1}{2}{3}{4}
Non-isomorphic representatives of the a(6) = 30 multiset partitions:
  {111111}  {1}{11111}  {1}{1}{1111}  {1}{1}{1}{111}  {1}{1}{1}{1}{11}
  {111222}  {11}{1111}  {1}{11}{111}  {1}{1}{11}{11}  {1}{1}{2}{2}{12}
  {112233}  {111}{111}  {11}{11}{11}  {1}{2}{11}{22}
  {123456}  {111}{222}  {11}{12}{22}  {1}{2}{12}{12}
            {112}{122}  {11}{22}{33}  {1}{2}{3}{123}    {1}{1}{1}{1}{1}{1}
            {12}{1122}  {1}{2}{1122}                    {1}{1}{1}{2}{2}{2}
            {123}{123}  {12}{12}{12}                    {1}{1}{2}{2}{3}{3}
                        {12}{13}{23}                    {1}{2}{3}{4}{5}{6}
		

Crossrefs

Planted achiral trees are A003238.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Achiral integer partitions are counted by A330224.
Non-isomorphic fully chiral multiset partitions are A330227.
MM-numbers of achiral multisets of multisets are A330232.
Achiral factorizations are A330234.

Extensions

a(10)-a(11) and a(13) from Erich Friedman, Nov 20 2024
a(12) from Bert Dobbelaere, Apr 29 2025
More terms from Bert Dobbelaere, May 02 2025

A330232 MM-numbers of achiral multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 72, 73, 76, 79, 80
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

First differs from A322554 in lacking 141.
A multiset of multisets is achiral if it is not changed by any permutation of the vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of non-achiral multisets of multisets (the complement of this sequence) together with their MM-numbers begins:
  35: {{2},{1,1}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  45: {{1},{1},{2}}
  61: {{1,2,2}}
  65: {{2},{1,2}}
  69: {{1},{2,2}}
  70: {{},{2},{1,1}}
  71: {{1,1,3}}
  74: {{},{1,1,2}}
  75: {{1},{2},{2}}
  77: {{1,1},{3}}
  78: {{},{1},{1,2}}
  87: {{1},{1,3}}
  89: {{1,1,1,2}}
  90: {{},{1},{1},{2}}
		

Crossrefs

The fully-chiral version is A330236.
Achiral set-systems are counted by A083323.
MG-numbers of planted achiral trees are A214577.
MM-weight is A302242.
MM-numbers of costrict (or T_0) multisets of multisets are A322847.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
Achiral factorizations are A330234.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]]
    Select[Range[100],Length[graprms[primeMS/@primeMS[#]]]==1&]

A330217 BII-numbers of achiral set-systems.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 16, 25, 32, 42, 52, 63, 64, 75, 116, 127, 128, 129, 130, 131, 136, 137, 138, 139, 256, 385, 512, 642, 772, 903, 1024, 1155, 1796, 1927, 2048, 2184, 2320, 2457, 2592, 2730, 2868, 3007, 4096, 4233, 6416, 6553, 8192, 8330
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is achiral if it is not changed by any permutation of the vertices.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all achiral set-systems together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  16: {{1,3}}
  25: {{1},{3},{1,3}}
  32: {{2,3}}
  42: {{2},{3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  63: {{1},{2},{3},{1,2},{1,3},{2,3}}
  64: {{1,2,3}}
  75: {{1},{2},{3},{1,2,3}}
		

Crossrefs

These are numbers n such that A330231(n) = 1.
Achiral set-systems are counted by A083323.
MG-numbers of planted achiral trees are A214577.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
BII-numbers of fully chiral set-systems are A330226.
MM-numbers of achiral multisets of multisets are A330232.
Achiral factorizations are A330234.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Select[Range[0,1000],Length[graprms[bpe/@bpe[#]]]==1&]

A330230 Least MM-number of a multiset of multisets with n distinct representatives obtainable by permuting the vertices.

Original entry on oeis.org

1, 35, 141, 1713, 28011, 355
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding multisets of multisets begins:
      1: {}
     35: {{2},{1,1}}
    141: {{1},{2,3}}
   1713: {{1},{2,3,4}}
  28011: {{1},{2,3,4,5}}
    355: {{2},{1,1,3}}
		

Crossrefs

The BII-number version is A330218.
Positions of first appearances in A330098.
The sorted version is A330233.
MM-numbers of achiral multisets of multisets are A330232.
MM-numbers of fully-chiral multisets of multisets are A330236.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]];
    dv=Table[Length[graprms[primeMS/@primeMS[n]]],{n,1000}];
    Table[Position[dv,i][[1,1]],{i,First[Split[Union[dv],#1+1==#2&]]}]

A330231 Number of distinct set-systems that can be obtained by permuting the vertices of the set-system with BII-number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 6, 6, 3, 1, 2, 3, 6, 3, 3, 6, 6, 2, 1, 6, 3, 6, 6, 3, 3, 1, 3, 2, 6, 3, 6, 3, 6, 2, 6, 1, 3, 6, 3, 6, 3, 3, 6, 6, 3, 1, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 1, 3, 6, 6, 3, 3, 6, 3, 6, 3, 3, 6
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			30 is the MM-number of {{2},{3},{1,2},{1,3}}, with vertex permutations
  {{1},{2},{1,3},{2,3}}
  {{1},{3},{1,2},{2,3}}
  {{2},{3},{1,2},{1,3}}
so a(30) = 3.
		

Crossrefs

Positions of 1's are A330217.
Positions of first appearances are A330218.
The version for MM-numbers is A330098.
Achiral set-systems are counted by A083323.
BII-numbers of fully chiral set-systems are A330226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[graprms[bpe/@bpe[n]]],{n,0,100}]

Formula

a(n) is a divisor of A326702(n)!.

A330218 Least BII-number of a set-system with n distinct representatives obtainable by permuting the vertices.

Original entry on oeis.org

0, 5, 12, 180, 35636, 13
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of set-systems together with their BII-numbers begins:
      0: {}
      5: {{1},{1,2}}
     12: {{1,2},{3}}
    180: {{1,2},{1,3},{2,3},{4}}
  35636: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{5}}
     13: {{1},{1,2},{3}}
		

Crossrefs

Positions of first appearances in A330231.
The MM-number version is A330230.
Achiral set-systems are counted by A083323.
BII-numbers of fully chiral set-systems are A330226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]];
    dv=Table[Length[graprms[bpe/@bpe[n]]],{n,0,1000}];
    Table[Position[dv,i][[1,1]]-1,{i,First[Split[Union[dv],#1+1==#2&]]}]

A330297 Number of labeled simple graphs covering n vertices with exactly two automorphisms, or with exactly n!/2 graphs obtainable by permuting the vertices.

Original entry on oeis.org

0, 0, 1, 3, 24, 540, 13320
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Comments

These are graphs with exactly one involution and no other symmetries.

Examples

			The a(4) = 24 graphs:
  {12,13,24}  {12,13,14,23}
  {12,13,34}  {12,13,14,24}
  {12,14,23}  {12,13,14,34}
  {12,14,34}  {12,13,23,24}
  {12,23,34}  {12,13,23,34}
  {12,24,34}  {12,14,23,24}
  {13,14,23}  {12,14,24,34}
  {13,14,24}  {12,23,24,34}
  {13,23,24}  {13,14,23,34}
  {13,24,34}  {13,14,24,34}
  {14,23,24}  {13,23,24,34}
  {14,23,34}  {14,23,24,34}
		

Crossrefs

The non-covering version is A330345.
The unlabeled version is A330346 (not A241454).
Covering simple graphs are A006129.
Covering graphs with exactly one automorphism are A330343.
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), and A330346 (unlabeled covering).

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[graprms[#]]==n!/2&]],{n,0,5}]

Formula

a(n) = n!/2 * A330346(n).

A330344 Number of unlabeled graphs with n vertices whose covered portion has exactly two automorphisms.

Original entry on oeis.org

0, 1, 2, 4, 13, 50, 367
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 graphs:
  {12}  {12}     {12}           {12}
        {12,13}  {12,13}        {12,13}
                 {12,13,24}     {12,13,24}
                 {12,13,14,23}  {12,13,14,23}
                                {12,13,14,25}
                                {12,13,24,35}
                                {12,13,14,23,25}
                                {12,13,14,23,45}
                                {12,13,15,24,34}
                                {12,13,14,15,23,24}
                                {12,13,14,23,24,35}
                                {12,13,14,23,25,45}
                                {12,13,14,15,23,24,35}
		

Crossrefs

The labeled version is A330345.
The covering case is A330346 (not A241454).
Unlabeled graphs are A000088.
Unlabeled graphs with exactly one automorphism are A003400.
Unlabeled connected graphs with exactly one automorphism are A124059.
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), and A330346 (unlabeled covering).

Formula

Partial sums of A330346.
Showing 1-10 of 11 results. Next