cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322853 Number of compositions (ordered partitions) of n into pentagonal pyramidal numbers (A002411).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 44, 57, 74, 96, 124, 159, 205, 265, 343, 444, 574, 740, 954, 1231, 1590, 2055, 2656, 3430, 4428, 5716, 7380, 9531, 12312, 15902, 20536, 26518, 34242, 44218, 57106, 73751, 95245, 122999, 158837, 205117
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 51; CoefficientList[Series[1/(1 - Sum[x^(k^2 (k + 1)/2), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k^2*(k+1)/2)).

A322854 Number of compositions (ordered partitions) of n into hexagonal pyramidal numbers (A002412).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 53, 67, 85, 108, 137, 173, 217, 271, 340, 428, 540, 682, 861, 1085, 1364, 1714, 2155, 2712, 3416, 4305, 5425, 6832, 8599, 10821, 13618, 17142, 21584, 27182, 34231, 43102, 54264, 68311, 85994
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (4 k - 1)/6), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)*(4*k-1)/6)).

A322856 Number of compositions (ordered partitions) of n into octagonal pyramidal numbers (A002414).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 54, 64, 76, 91, 110, 135, 166, 204, 250, 305, 370, 447, 539, 650, 787, 956, 1164, 1419, 1730, 2107, 2562, 3110, 3770, 4569, 5540, 6723, 8166, 9926, 12070, 14677, 17841, 21675
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 56; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (2 k - 1)/2), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)*(2*k-1)/2)).
Showing 1-3 of 3 results.