A322870 Ordinal transform of A302043.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 3, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 4, 3, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 4, 2, 1, 2, 1, 1, 1, 5, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 1024; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639 v078898 = ordinal_transform(vector(up_to,n,A020639(n))); A078898(n) = v078898[n]; A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); A302043(n) = (n - A302042(n)); v322870 = ordinal_transform(vector(up_to,n,A302043(n))); A322870(n) = v322870[n];