A322873 Ordinal transform of A300721, which is Möbius transform of A060681.
1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 3, 1, 4, 3, 4, 1, 4, 1, 5, 2, 5, 1, 6, 2, 6, 2, 3, 1, 7, 1, 1, 2, 7, 2, 4, 1, 8, 3, 2, 1, 5, 1, 3, 3, 9, 1, 3, 2, 8, 4, 4, 1, 6, 2, 5, 3, 10, 1, 4, 1, 11, 1, 5, 3, 4, 1, 6, 2, 7, 1, 6, 1, 12, 2, 4, 1, 7, 1, 7, 4, 13, 1, 8, 1, 14, 2, 1, 1, 5, 2, 3, 3, 15, 1, 8, 1, 8, 2, 2, 1, 9, 1, 3, 4
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
A060681[n_] := n - n/FactorInteger[n][[1, 1]]; A300721[n_] := Sum[MoebiusMu[n/d] A060681[d], {d, Divisors[n]}]; b[_] = 1; a[n_] := a[n] = With[{t = A300721[n]}, b[t]++]; a /@ Range[1, 105] (* Jean-François Alcover, Dec 19 2021 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A060681(n) = if(1==n,0,(n-(n/vecmin(factor(n)[, 1])))); A300721(n) = sumdiv(n, d, moebius(n/d)*A060681(d)); v322873 = ordinal_transform(vector(up_to,n,A300721(n))); A322873(n) = v322873[n];