cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322873 Ordinal transform of A300721, which is Möbius transform of A060681.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 3, 1, 4, 3, 4, 1, 4, 1, 5, 2, 5, 1, 6, 2, 6, 2, 3, 1, 7, 1, 1, 2, 7, 2, 4, 1, 8, 3, 2, 1, 5, 1, 3, 3, 9, 1, 3, 2, 8, 4, 4, 1, 6, 2, 5, 3, 10, 1, 4, 1, 11, 1, 5, 3, 4, 1, 6, 2, 7, 1, 6, 1, 12, 2, 4, 1, 7, 1, 7, 4, 13, 1, 8, 1, 14, 2, 1, 1, 5, 2, 3, 3, 15, 1, 8, 1, 8, 2, 2, 1, 9, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A060681[n_] := n - n/FactorInteger[n][[1, 1]];
    A300721[n_] := Sum[MoebiusMu[n/d] A060681[d], {d, Divisors[n]}];
    b[_] = 1;
    a[n_] := a[n] = With[{t = A300721[n]}, b[t]++];
    a /@ Range[1, 105] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A060681(n) = if(1==n,0,(n-(n/vecmin(factor(n)[, 1]))));
    A300721(n) = sumdiv(n, d, moebius(n/d)*A060681(d));
    v322873 = ordinal_transform(vector(up_to,n,A300721(n)));
    A322873(n) = v322873[n];

A322870 Ordinal transform of A302043.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 3, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 4, 3, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 4, 2, 1, 2, 1, 1, 1, 5, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 1024;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
    A302043(n) = (n - A302042(n));
    v322870 = ordinal_transform(vector(up_to,n,A302043(n)));
    A322870(n) = v322870[n];

A322872 Ordinal transform of A171462, where A171462(n) = n - A052126(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 3, 3, 1, 4, 1, 2, 2, 1, 1, 3, 2, 1, 3, 2, 1, 3, 1, 4, 2, 1, 3, 4, 1, 2, 3, 2, 1, 4, 1, 2, 5, 1, 1, 3, 2, 3, 1, 2, 1, 6, 1, 3, 1, 1, 1, 4, 1, 2, 2, 4, 3, 4, 1, 1, 2, 5, 1, 5, 1, 2, 6, 3, 2, 4, 1, 2, 3, 1, 1, 5, 2, 1, 2, 3, 1, 6, 3, 2, 1, 1, 2, 3, 1, 4, 3, 4, 1, 2, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A171462[n_] := If[n == 1, 0, Module[{f = FactorInteger[n], p},
         p = f[[-1, 1]]; n(p-1)/p]];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A171462[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 21 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A171462(n) = if(1==n,0,(n-(n/vecmax(factor(n)[, 1]))));
    v322872 = ordinal_transform(vector(up_to,n,A171462(n)));
    A322872(n) = v322872[n];
Showing 1-3 of 3 results.