A322875 Number of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals two.
0, 1, 5, 21, 86, 361, 1584, 7315, 35635, 183080, 990659, 5635021, 33622161, 209973099, 1369560267, 9310957518, 65852852210, 483672626464, 3683088047043, 29033382412670, 236591717703447, 1990467019391404, 17268021545339042, 154304401318961489
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..590
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, k, m, l) option remember; `if`(n<1, 1, `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l)) end: A:= (n, k)-> b(n-1, min(k, n-1), 1, n): a:= n-> (k-> A(n, k)-A(n, k-1))(2): seq(a(n), n=2..30);
-
Mathematica
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m b[n - 1, k, m, l]]; A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n]; a[n_] := With[{k = 2}, A[n, k] - A[n, k - 1]]; a /@ Range[2, 30] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)