A322876 Number of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals three.
0, 1, 7, 39, 209, 1123, 6153, 34723, 202852, 1229672, 7742792, 50653678, 344195782, 2427812876, 17761759538, 134650690097, 1056676856777, 8574943334545, 71881479393513, 621792661601615, 5544644720281979, 50918125911279963, 481093310682127190
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..586
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, k, m, l) option remember; `if`(n<1, 1, `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l)) end: A:= (n, k)-> b(n-1, min(k, n-1), 1, n): a:= n-> (k-> A(n, k)-A(n, k-1))(3): seq(a(n), n=3..30);
-
Mathematica
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m b[n - 1, k, m, l]]; A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n]; a[n_] := With[{k = 3}, A[n, k] - A[n, k - 1]]; a /@ Range[3, 30] (* Jean-François Alcover, May 05 2020, after Maple *)