A322877 Number of set partitions of [n] such that the maximal absolute difference between the least elements of consecutive blocks equals four.
0, 1, 11, 77, 493, 3124, 20019, 130916, 878249, 6063134, 43144661, 316670184, 2397764986, 18726889938, 150814853887, 1251834352246, 10703915163764, 94227518620167, 853463133257984, 7948557602950239, 76069254546156710, 747596311576859585, 7540213445348427312
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..584
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, k, m, l) option remember; `if`(n<1, 1, `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l)) end: A:= (n, k)-> b(n-1, min(k, n-1), 1, n): a:= n-> (k-> A(n, k)-A(n, k-1))(4): seq(a(n), n=4..30);
-
Mathematica
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m b[n - 1, k, m, l]]; A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n]; a[n_] := With[{k = 4}, A[n, k] - A[n, k - 1]]; a /@ Range[4, 30] (* Jean-François Alcover, May 05 2020, after Maple *)