A322884 Number of set partitions of [2n] such that the maximal absolute difference between the least elements of consecutive blocks equals n.
1, 1, 5, 39, 493, 9320, 242366, 8193031, 346270455, 17780116911, 1085004090887, 77324278953174, 6344818280326312, 592415284729545433, 62319734032202722887, 7323734663214254662683, 954467851066831095051393, 137065739258353347820981920
Offset: 0
Keywords
Examples
a(1) = 1: 1|2. a(2) = 5: 124|3, 12|34, 12|3|4, 13|2|4, 1|23|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..130
- Wikipedia, Partition of a set
Crossrefs
Cf. A287215.
Programs
-
Maple
b:= proc(n, k, m, l) option remember; `if`(n<1, 1, `if`(l-n>k, 0, b(n-1, k, m+1, n))+m*b(n-1, k, m, l)) end: A:= (n, k)-> b(n-1, min(k, n-1), 1, n): a:= n-> A(2*n, n)-`if`(n=0, 0, A(2*n, n-1)): seq(a(n), n=0..20); -
Mathematica
b[n_, k_, m_, l_] := b[n, k, m, l] = If[n < 1, 1, If[l - n > k, 0, b[n - 1, k, m + 1, n]] + m b[n - 1, k, m, l]]; A[n_, k_] := b[n - 1, Min[k, n - 1], 1, n]; a[n_] := A[2 n, n] - If[n == 0, 0, A[2 n, n - 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 03 2019, translated from Maple *)
Formula
a(n) = A287215(2n,n).
Comments