A322887 Decimal expansion of the asymptotic mean value of the exponential abundancy index A051377(k)/k.
1, 1, 3, 6, 5, 7, 0, 9, 8, 7, 4, 9, 3, 6, 1, 3, 9, 0, 8, 6, 5, 2, 0, 7, 3, 1, 5, 2, 3, 8, 3, 8, 3, 2, 5, 9, 3, 4, 4, 8, 8, 0, 9, 0, 1, 8, 6, 3, 9, 5, 7, 2, 7, 6, 7, 8, 9, 0, 5, 2, 6, 5, 4, 4, 3, 1, 6, 2, 3, 9, 7, 2, 0, 3, 1, 5, 1, 5, 2, 8, 8, 3, 6, 8, 7, 6, 1, 3, 9, 2, 7, 2, 7, 4, 8, 9, 8, 5, 5, 2, 6, 2, 1, 9, 2
Offset: 1
Examples
1.13657098749361390865207315238383259344880901863957...
Links
- Peter Hagis, Jr., Some results concerning exponential divisors, International Journal of Mathematics and Mathematical Sciences, Vol. 11, No. 2, (1988), pp. 343-349.
Programs
-
PARI
default(realprecision, 120); default(parisize, 2000000000); my(kmax = 135); prodeulerrat(1 + (1 - 1/p) * sum(k = 1, kmax, 1/(p^(3*k)-p^k))) \\ Amiram Eldar, Mar 09 2024 (The calculation takes a few minutes.)
Formula
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} esigma(k)/k, where esigma(k) is the sum of exponential divisors of k (A051377).
Equals Product_{p prime} (1 + (1 - 1/p) * Sum_{k>=1} 1/(p^(3*k)-p^k)).
Extensions
a(7)-a(22) from Jon E. Schoenfield, Dec 30 2018
More terms from Amiram Eldar, Mar 09 2024