cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322891 Triangle, read by rows, each row n being defined by g.f. Product_{k=1..n} (k + x + 2*k*x^2), for n >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 9, 6, 8, 6, 11, 42, 45, 84, 44, 48, 24, 50, 227, 310, 717, 620, 908, 400, 384, 120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840, 720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080, 5040, 13068, 83692, 163585, 556640, 838554, 1948268, 2254625, 3896536, 3354216, 4453120, 2617360, 2678144, 836352, 645120, 40320, 109584, 763244, 1601460, 5955777, 9882432, 25330938, 33402132, 64599201, 66804264, 101323752, 79059456, 95292432, 51246720, 48847616, 14026752, 10321920
Offset: 0

Views

Author

Paul D. Hanna, Dec 29 2018

Keywords

Comments

Row sums equal A007559(n+1), the triple factorial numbers.

Examples

			This irregular triangle of coefficients T(n,k) of x^k in Product_{m=1..n} (m + x + 2*m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 2;
2, 3, 9, 6, 8;
6, 11, 42, 45, 84, 44, 48;
24, 50, 227, 310, 717, 620, 908, 400, 384;
120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840;
720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080;
5040, 13068, 83692, 163585, 556640, 838554, 1948268, 2254625, 3896536, 3354216, 4453120, 2617360, 2678144, 836352, 645120;
40320, 109584, 763244, 1601460, 5955777, 9882432, 25330938, 33402132, 64599201, 66804264, 101323752, 79059456, 95292432, 51246720, 48847616, 14026752, 10321920; ...
in which the central terms equal A322892:
[1, 1, 9, 45, 717, 6917, 154877, 2254625, 64599201, 1267075953, ...].
RELATED SEQUENCES.
Note that the terms in the secondary diagonal A322893 in this triangle,
[1, 3, 42, 310, 6165, 74991, 1948268, 33402132, 1070751825, ...],
may be divided by triangular numbers n*(n+1)/2 to obtain A322894:
[1, 1, 7, 31, 411, 3571, 69581, 927837, 23794485, 433057989, ...].
		

Crossrefs

Cf. A322892 (central terms), A322893 (diagonal), A322894.
Cf. A322235 (variant), A322225 (variant), A000165, A007559.

Programs

  • PARI
    {T(n, k) = polcoeff( prod(m=1, n, m + x + 2*m*x^2) +x*O(x^k), k)}
    /* Print the irregular triangle */
    for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))

Formula

T(n,0) = n! for n >= 0.
T(n,2*n) = 2^n * n!, the even double factorials, for n >= 0.
Sum_{k=0..2*n} T(n,k) = Product_{k=0..n} (3*k + 1), the triple factorials, for n >= 0.