cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322928 a(0)=1; for n>0, a(n) is the number of rooted 3-regular maps with 2n vertices on the projective plane.

Original entry on oeis.org

1, 9, 118, 1773, 28650, 484578, 8457708, 151054173, 2745685954, 50606020854, 943283037684, 17746990547634, 336517405188900, 6423775409047716, 123332141503711704, 2379824766494404317, 46124764901514110898, 897483137740689843054, 17524230350476917414180
Offset: 0

Views

Author

Evgeniy Krasko, Dec 31 2018

Keywords

Crossrefs

Cf. A002005 (genus 0)

Programs

  • Maple
    A[0]:= 1: A[1]:= 9: A[2]:= 118: A[3]:= 1773: A[4]:= 28650: A[5]:= 484578:
    for n from 6 to 20 do
      A[n]:= 995328*(n - 4)*(3*n - 16)*(3*n - 14)*(3*n - 10)*(3*n - 8)*A[n - 6]/((n - 3)*(n - 2)*(n - 1)*n*(n + 1)) - 576*(3*n - 10)*(3*n - 8)*(108*n^2 - 648*n + 1049)*A[n - 4]/((n - 2)*(n - 1)*n*(n + 1)) + 12*(108*n^2 - 432*n + 505)*A[n - 2]/(n*(n + 1))
    od:
    seq(A[i],i=0..20); # Robert Israel, Dec 30 2022
  • Mathematica
    a[n_] := -((2^(2 n + 1) (3 n)!!)/((n + 1)! n!!)) + (3 2^(2 n))/(n + 1)!! Sum[(3^k (2 k - 1)!! (3 n - 2 k - 1)!!)/(2^k k! (n - k)!), {k, 0, n}];
    Table[a[n], {n, 0, 20}] (* Andrey Zabolotskiy, Dec 29 2022 *)

Formula

Theorem 3.3 gives an explicit formula.
From Vaclav Kotesovec, Dec 30 2022: (Start)
Recurrence: (n-3)*(n-2)*(n-1)*n*(n+1)*a(n) = 12*(n-3)*(n-2)*(n-1)*(108*n^2 - 432*n + 505)*a(n-2) - 576*(n-3)*(3*n - 10)*(3*n - 8)*(108*n^2 - 648*n + 1049)*a(n-4) + 995328*(n-4)*(3*n - 16)*(3*n - 14)*(3*n - 10)*(3*n - 8)*a(n-6).
a(n) ~ Gamma(1/4) * 2^(2*n - 5/4) * 3^(3*n/2 + 5/4) / (Pi * n^(5/4)) * (1 - 2^(7/4)*sqrt(Pi)/(Gamma(1/4)*3^(3/4)*n^(1/4)) + Pi/(Gamma(1/4)^2*sqrt(3*n))).
(End)

Extensions

Added initial term a(0)=1 to match Taylor series expansion in Theorem 3.3. - N. J. A. Sloane, Jan 11 2019
Terms a(11) and beyond from Andrey Zabolotskiy, Dec 29 2022