A322967 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of distinct products Product_{j=1..k} b_j with 1 <= b_j<= n.
1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 9, 5, 1, 6, 15, 16, 14, 6, 1, 7, 21, 25, 30, 18, 7, 1, 8, 28, 36, 55, 40, 25, 8, 1, 9, 36, 49, 91, 75, 65, 30, 9, 1, 10, 45, 64, 140, 126, 140, 80, 36, 10, 1, 11, 55, 81, 204, 196, 266, 175, 100, 42, 11
Offset: 1
Examples
In case of (n,k) = (3,2): | 1 2 3 --+-------- 1 | 1, 2, 3 2 | 2, 4, 6 3 | 3, 6, 9 Distinct products are 1,2,3,4,6,9. So A(3,2) = 6. Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 3, 4, 5, 6, 7, 8, 9, 10, ... 3, 6, 10, 15, 21, 28, 36, 45, 55, ... 4, 9, 16, 25, 36, 49, 64, 81, 100, ... 5, 14, 30, 55, 91, 140, 204, 285, 385, ... 6, 18, 40, 75, 126, 196, 288, 405, 550, ... 7, 25, 65, 140, 266, 462, 750, 1155, 1705, ... 8, 30, 80, 175, 336, 588, 960, 1485, 2200, ... 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..25, flattened
Programs
-
Mathematica
Table[Length@ Union@ Flatten[TensorProduct @@ ConstantArray[Range@ #, k]] &[n - k + 1], {n, 11}, {k, n, 1, -1}] // Flatten (* Michael De Vlieger, Jan 01 2019 *)