A322968 Number of integer partitions of n with no ones whose parts are all powers of the same squarefree number.
1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 9, 1, 8, 4, 10, 1, 14, 1, 16, 5, 16, 1, 24, 2, 22, 5, 28, 1, 37, 1, 36, 7, 38, 4, 55, 1, 48, 9, 63, 1, 73, 1, 76, 12, 76, 1, 105, 2, 98, 11, 116, 1, 128, 5, 143, 14, 142, 1, 186, 1, 168, 18, 202, 5, 223, 1, 240, 17, 247, 1, 305, 1, 286, 23
Offset: 0
Keywords
Examples
The a(2) = 1 through a(12) = 9 integer partitions (A = 10, B = 11): (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (66) (22) (33) (44) (333) (55) (84) (42) (422) (82) (93) (222) (2222) (442) (444) (4222) (822) (22222) (3333) (4422) (42222) (222222) The a(20) = 16 integer partitions: (10,10), (16,4), (8,8,4), (16,2,2), (5,5,5,5), (8,4,4,4), (8,8,2,2), (4,4,4,4,4), (8,4,4,2,2), (4,4,4,4,2,2), (8,4,2,2,2,2), (4,4,4,2,2,2,2), (8,2,2,2,2,2,2), (4,4,2,2,2,2,2,2), (4,2,2,2,2,2,2,2,2), (2,2,2,2,2,2,2,2,2,2).
Links
Crossrefs
Programs
-
Mathematica
radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]); powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n]; Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],And@@powsqfQ/@#,SameQ@@radbase/@#]&]],{n,30}]
-
PARI
a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&issquarefree(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
-
PARI
seq(n)={Vec(1 + sum(d=2, n, if(issquarefree(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025
Formula
From Andrew Howroyd, Jan 23 2025: (Start)
G.f.: 1 + Sum_{k>=2} -1 + 1/Product_{j>=1} (1 - x^(A005117(k)^j)).
a(p) = 1 for prime p. (End)
Extensions
a(66) onwards from Andrew Howroyd, Jan 23 2025
Comments