cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322968 Number of integer partitions of n with no ones whose parts are all powers of the same squarefree number.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 9, 1, 8, 4, 10, 1, 14, 1, 16, 5, 16, 1, 24, 2, 22, 5, 28, 1, 37, 1, 36, 7, 38, 4, 55, 1, 48, 9, 63, 1, 73, 1, 76, 12, 76, 1, 105, 2, 98, 11, 116, 1, 128, 5, 143, 14, 142, 1, 186, 1, 168, 18, 202, 5, 223, 1, 240, 17, 247, 1, 305, 1, 286, 23
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2019

Keywords

Comments

First differs from A072721 at a(12) = 9, A072721(12) = 10.
First differs from A379957 at a(16) = 10, A379957(16) = 9.

Examples

			The a(2) = 1 through a(12) = 9 integer partitions (A = 10, B = 11):
  (2)  (3)  (4)   (5)  (6)    (7)  (8)     (9)    (A)      (B)  (66)
            (22)       (33)        (44)    (333)  (55)          (84)
                       (42)        (422)          (82)          (93)
                       (222)       (2222)         (442)         (444)
                                                  (4222)        (822)
                                                  (22222)       (3333)
                                                                (4422)
                                                                (42222)
                                                                (222222)
The a(20) = 16 integer partitions:
  (10,10), (16,4),
  (8,8,4), (16,2,2),
  (5,5,5,5), (8,4,4,4), (8,8,2,2),
  (4,4,4,4,4), (8,4,4,2,2),
  (4,4,4,4,2,2), (8,4,2,2,2,2),
  (4,4,4,2,2,2,2), (8,2,2,2,2,2,2),
  (4,4,2,2,2,2,2,2),
  (4,2,2,2,2,2,2,2,2),
  (2,2,2,2,2,2,2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    powsqfQ[n_]:=SameQ@@Last/@FactorInteger[n];
    Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],And@@powsqfQ/@#,SameQ@@radbase/@#]&]],{n,30}]
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&issquarefree(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
    
  • PARI
    seq(n)={Vec(1 + sum(d=2, n, if(issquarefree(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025

Formula

From Andrew Howroyd, Jan 23 2025: (Start)
G.f.: 1 + Sum_{k>=2} -1 + 1/Product_{j>=1} (1 - x^(A005117(k)^j)).
a(p) = 1 for prime p. (End)

Extensions

a(66) onwards from Andrew Howroyd, Jan 23 2025