A322988 Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(1) = 0 if n is a prime power > 2, f(2) = -1, and f(n) = A322990(n) for all other numbers.
1, 2, 3, 3, 3, 4, 3, 3, 3, 5, 3, 6, 3, 7, 8, 3, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 3, 15, 3, 6, 3, 3, 16, 17, 18, 19, 3, 20, 21, 22, 3, 8, 3, 23, 24, 25, 3, 26, 3, 27, 28, 29, 3, 30, 31, 32, 33, 34, 3, 35, 3, 36, 37, 3, 38, 11, 3, 39, 40, 10, 3, 41, 3, 42, 43, 44, 45, 13, 3, 46, 3, 47, 3, 48, 49, 50, 51, 52, 3, 15, 53, 54, 55, 56, 57, 58, 3, 59, 60, 61, 3, 16, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 8192; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A289271(n) = { my(v=0,i=0,x=1); for(d=2,oo,if(n==1, return(v)); if(1==gcd(x,d)&&1==omega(d), if(!(n%d)&&1==gcd(d,n/d), v += 2^i; n /= d; x *= d); i++)); }; \\ After Rémy Sigrist's program for A289271. A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp,m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); }; \\ Antti Karttunen, Jan 02 2019 A322990(n) = A289272(A289271(n)>>1); A322988aux(n) = if(2==n,-1,if(isprimepower(n),0,A322990(n))); v322988 = rgs_transform(vector(up_to,n,A322988aux(n))); A322988(n) = v322988[n];
Comments