A323011 a(n) = A172103(n) - A172104(n).
0, 0, 0, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 2, 1, 1, 0, 0, 1, 1, 1, 2, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 3, 2, 2, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 3, 3, 4, 3, 4, 3, 4, 5, 5, 5, 5, 5, 4
Offset: 1
Keywords
Examples
a(1) = A172103(1) - A172104(1) = 0. a(2) = A172103(2) - A172104(2) = 0. a(3) = A172103(3) - A172104(3) = 0. a(4) = A172103(4) - A172104(4) = 1.
Links
- R. H. Hudson and A. Brauer, On the exact number of primes in the arithmetic progressions 4n +/- 1 and 6n +/- 1, J. reine angew. Math., 291 (1977), 23-29.
Programs
-
Maple
f:= proc(t) `if`(isprime(6*t-1),1,0) - `if`(isprime(6*t+1),1,0) end proc: ListTools:-PartialSums(map(f, [$1..100])); # Robert Israel, Feb 19 2019
-
Mathematica
Accumulate@ Boole@ PrimeQ[6 Range@ # - 1] - Accumulate@ Boole@ PrimeQ[6 Range@ # + 1] &@ 60 (* Michael De Vlieger, Jan 27 2019 *)
-
PARI
isp(n) = isprime(6*n+1); \\ A167021 ism(n) = isprime(6*n-1); \\ A167020 psisp(n) = sum(k=1, n, isp(k)); \\ A172104 psism(n) = sum(k=1, n, ism(k)); \\ A172103 a(n) = psism(n) - psisp(n); \\ Michel Marcus, Jan 18 2019
Extensions
More terms from Michel Marcus, Feb 01 2019