cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A323015 a(n) is the number of unordered partitions of 24*n + 4 into four squares of primes (A001248).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 4, 3, 4, 3, 4, 4, 4, 4, 4, 3, 6, 5, 5, 4, 5, 6, 4, 6, 5, 2, 6, 6, 6, 5, 5, 7, 3, 7, 8, 3, 8, 7, 6, 6, 7, 9, 5, 6, 9, 4, 7, 7, 6, 7, 7, 10, 4, 5, 10, 5, 9, 7, 6, 7, 4, 10, 8, 6, 10, 5, 9, 7, 8, 10, 6, 11, 10, 8, 11
Offset: 0

Views

Author

Jianing Song, Jan 05 2019

Keywords

Comments

Also, a(n) is the number of unordered partitions of n into four terms of A024702.
a(n) > 0 for 4 <= n <= 2*10^4. Conjecture: a(n) > 0 for all n >= 4. A stronger conjecture: lim inf a(n) = +oo.
This is a quadratic analog of Goldbach's conjecture, asking for the smallest k such that any sufficiently large number congruent to k modulo 24 can be written as the sum of k squares of primes. k = 1 is trivially false. Let n = 49*t + 2 (t > 0), then 24*n + 2 = 24*49*t + 98, which is a multiple of 7^2. If p^2 + q^2 = 24*n + 2, since the squares of primes other than 7 are congruent to 1, 2, 4 modulo 7, we must have p = q = 7, but p^2 + q^2 < n. So k = 2 is false. Let n = 245*t + 103, then 24*n + 3 = 24*245*t + 2475, which is a multiple of 5. If p^2 + q^2 + r^2 = 24*n + 3, since the squares of primes other than 5 are congruent to 1, 4 modulo 5, we must have that at least one of p, q, r is 5. Suppose that p = 5, then q^2 + r^2 = 24*245*t + 2450, which is a multiple of 7^2. As is shown above, q = r = 7, but p^2 + q^2 + r^2 < n. So k = 3 is also false. On the other hand, if the case k = 4 is true, then all the cases k >= 4 are trivially true, because we can add as many 5^2 as needed. So the case k = 4 is the most interesting.

Examples

			100 = 5^2 + 5^2 + 5^2 + 5^2.
124 = 5^2 + 5^2 + 5^2 + 7^2.
148 = 5^2 + 5^2 + 7^2 + 7^2.
172 = 5^2 + 7^2 + 7^2 + 7^2.
196 = 7^2 + 7^2 + 7^2 + 7^2 = 5^2 + 5^2 + 5^2 + 11^2.
220 = 5^2 + 5^2 + 7^2 + 11^2.
244 = 5^2 + 7^2 + 7^2 + 11^2 = 5^2 + 5^2 + 5^2 + 13^2.
268 = 7^2 + 7^2 + 7^2 + 11^2 = 5^2 + 5^2 + 7^2 + 13^2.
...
		

Crossrefs

See A323016 for the ordered version.

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`((ithprime(t+2)^2-1)/24>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i, c) option remember; `if`(n=0, `if`(c=0, 1, 0),
          `if`(min(i, c)<1, 0, b(n, i-1, c)+(t-> b(n-t, min(i,
             h(n-t)), c-1))((ithprime(i+2)^2-1)/24)))
        end:
    a:= n-> b(n, h(n), 4):
    seq(a(n), n=0..120);  # Alois P. Heinz, Jan 05 2019
  • Mathematica
    h[n_] := h[n] = If[n < 1, 0, Function[t, If[(Prime[t + 2]^2 - 1)/24 > n, t - 1, t]][1 + h[n - 1]]];
    b[n_, i_, c_] := b[n, i, c] = If[n == 0, If[c == 0, 1, 0], If[Min[i, c] < 1, 0, b[n, i - 1, c] + Function[t, b[n - t, Min[i, h[n - t]], c - 1]][(Prime[i + 2]^2 - 1)/24]]];
    a[n_] := b[n, h[n], 4];
    a /@ Range[0, 120] (* Jean-François Alcover, Nov 22 2020, after Alois P. Heinz *)
  • PARI
    a(n) = if(n<4, 0, my(i=0, k=sqrt(24*n-71)); forprime(p=5, k, forprime(q=p, k, forprime(r=q, k, forprime(s=r, k, if(p^2+q^2+r^2+s^2==24*n+4, i++))))); i)
Showing 1-1 of 1 results.