A323025 Numbers with exactly four distinct exponents in their prime factorization, or four distinct parts in their prime signature.
75600, 105840, 113400, 118800, 126000, 140400, 151200, 158760, 178200, 183600, 198000, 205200, 210600, 211680, 232848, 234000, 237600, 246960, 248400, 252000, 261360, 275184, 275400, 280800, 283500, 294000, 302400, 306000, 307800, 313200, 315000, 334800
Offset: 1
Keywords
Examples
126000 = 2^4 * 3^2 * 5^3 * 7^1 has four distinct exponents {1, 2, 3, 4}, so belongs to the sequence. 831600 = 2^4 * 3^3 * 5^2 * 7^1 * 11^1 has four distinct exponents {1, 2, 3, 4}, so belongs to the sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Carlo Sanna, On the number of distinct exponents in the prime factorization of an integer, Proceedings - Mathematical Sciences, Indian Academy of Sciences, Vol. 130, No. 1 (2020), Article 27, alternative link.
Crossrefs
Programs
-
Mathematica
tom[n_]:=Length[Union[Last/@If[n==1,{},FactorInteger[n]]]]; Select[Range[100000],tom[#]==4&]
-
PARI
is(n) = #Set(factor(n)[, 2]) == 4 \\ David A. Corneth, Jan 09 2019
Comments