A323049 Numbers that are neither 5-smooth nor a sum of two 5-smooth numbers.
71, 119, 142, 191, 211, 213, 223, 238, 239, 284, 299, 311, 319, 355, 357, 359, 367, 373, 382, 397, 419, 422, 426, 431, 446, 461, 463, 467, 473, 476, 478, 479, 497, 523, 529, 547, 551, 553, 559, 568, 569, 571, 573, 583, 589, 595, 598, 599, 607, 613, 617, 619, 622, 623, 638, 639, 659, 669, 671, 703, 709, 710, 713, 714
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get all terms <= N V:= {seq(seq(seq(2^a*3^b*5^c, a = 0 .. floor(log[2](N/3^b/5^c))),b = 0 .. floor(log[3](N/5^c))),c=0..floor(log[5](N)))}: S:= {$1..N} minus V minus {seq(seq(V[i]+V[j],i=1..j),j=1..nops(V))}: A:= sort(convert(S,list)): # Robert Israel, Apr 02 2019
-
Mathematica
f[n_] := Union@Flatten@Table[2^a*3^b*5^c, {a, 0, Log2[n]}, {b, 0, Log[3, n/2^a]}, {c, 0, Log[5, n/(2^a*3^b)]}]; b = Block[{nn = 800, s}, s = f[nn]; {0, 1}~Join~ Select[Union@Flatten@Outer[Plus, s, s], # <= nn &]]; Complement[Range[800], b]
Comments