cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A101417 Number of partitions of n into parts without powers of 2.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 2, 1, 1, 3, 3, 3, 6, 5, 6, 10, 9, 12, 17, 17, 22, 28, 30, 37, 48, 52, 62, 78, 86, 103, 127, 141, 166, 201, 227, 266, 317, 358, 417, 492, 560, 647, 757, 860, 991, 1153, 1309, 1503, 1738, 1971, 2257, 2594, 2941, 3356, 3843, 4351, 4948, 5644, 6382, 7240
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 16 2005

Keywords

Examples

			a(12) = #{3+3+3+3, 6+3+3, 6+6, 7+5, 9+3, 12} = 6.
From _Gus Wiseman_, Jan 07 2019: (Start)
The a(3) = 1 through a(14) = 5 integer partitions (A = 10, ..., E = 14):
  (3)  (5)  (6)   (7)  (53)  (9)    (A)   (B)    (C)     (D)    (E)
            (33)             (63)   (55)  (65)   (66)    (76)   (77)
                             (333)  (73)  (533)  (75)    (A3)   (95)
                                                 (93)    (553)  (B3)
                                                 (633)   (733)  (653)
                                                 (3333)         (5333)
(End)
		

Crossrefs

Programs

  • Maple
    g:= product(1-x^(2^j),j=0..15)/product(1-x^i,i=1..75): gser:= series(g, x=0,62): seq(coeff(gser,x,n),n=0..59); # Emeric Deutsch, Mar 29 2006
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Not/@IntegerQ/@Log[2,#]&]],{n,20}] (* Gus Wiseman, Jan 07 2019 *)

Formula

G.f.: Product_{j>=1} (1-x^(2^j)) / Product_{i>=2} (1-x^i). - Emeric Deutsch, Mar 29 2006

A323054 Number of strict integer partitions of n with no 1's such that no part is a power of any other part.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 3, 4, 4, 6, 6, 8, 9, 12, 13, 16, 19, 21, 25, 30, 36, 40, 47, 53, 63, 71, 83, 94, 107, 121, 140, 159, 180, 204, 233, 260, 296, 334, 377, 421, 474, 532, 598, 668, 750, 835, 933, 1038, 1163, 1292, 1435, 1597, 1771, 1966, 2180, 2421, 2673
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			The a(2) = 1 through a(13) = 8 strict integer partitions (A = 10, B = 11, C = 12, D = 13):
  (2)  (3)  (4)  (5)   (6)  (7)   (8)   (9)   (A)    (B)    (C)    (D)
                 (32)       (43)  (53)  (54)  (64)   (65)   (75)   (76)
                            (52)  (62)  (63)  (73)   (74)   (84)   (85)
                                        (72)  (532)  (83)   (A2)   (94)
                                                     (92)   (543)  (A3)
                                                     (632)  (732)  (B2)
                                                                   (643)
                                                                   (652)
		

Crossrefs

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],UnsameQ@@#,stableQ[#,IntegerQ[Log[#1,#2]]&]]&]],{n,30}]

A308558 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 into powers of k > 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 4, 2, 2, 1, 4, 2, 2, 2, 1, 6, 3, 2, 2, 2, 1, 6, 3, 2, 2, 2, 2, 1, 10, 3, 3, 2, 2, 2, 2, 1, 10, 5, 3, 2, 2, 2, 2, 2, 1, 14, 5, 3, 3, 2, 2, 2, 2, 2, 1, 14, 5, 3, 3, 2, 2, 2, 2, 2, 2, 1, 20, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 20, 7, 4, 3, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2019

Keywords

Examples

			Triangle begins:
  1
  1  2
  1  2  2
  1  4  2  2
  1  4  2  2  2
  1  6  3  2  2  2
  1  6  3  2  2  2  2
  1 10  3  3  2  2  2  2
  1 10  5  3  2  2  2  2  2
  1 14  5  3  3  2  2  2  2  2
  1 14  5  3  3  2  2  2  2  2  2
  1 20  7  4  3  3  2  2  2  2  2  2
  1 20  7  4  3  3  2  2  2  2  2  2  2
Row n = 6 counts the following partitions:
  (111111)  (42)      (33)      (411)     (51)      (6)
            (222)     (3111)    (111111)  (111111)  (111111)
            (411)     (111111)
            (2211)
            (21111)
            (111111)
		

Crossrefs

Same as A102430 except for the k = 1 column.
Row sums are A102431(n) + 1.
Column k = 2 is A018819.
Column k = 3 is A062051.

Programs

  • Mathematica
    Table[If[k==1,1,Length[Select[IntegerPartitions[n],And@@(IntegerQ[Log[k,#]]&/@#)&]]],{n,10},{k,n}]

A323086 Number of factorizations of n into factors > 1 such that no factor is a power of any other (unequal) factor.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 3, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 9, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 4, 2, 5, 1, 4, 2, 5, 1, 14, 1, 2, 4, 4, 2, 5, 1, 9, 3, 2, 1, 11, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			The a(72) = 14 factorizations:
  (2*2*2*3*3),
  (2*2*2*9), (2*2*3*6),
  (2*2*18), (2*3*12), (2*6*6), (3*3*8), (3*4*6),
  (2*36), (3*24), (4*18), (6*12), (8*9),
  (72).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[facs[n],stableQ[Union[#],IntegerQ[Log[#1,#2]]&]&]],{n,100}]
Showing 1-4 of 4 results.