cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323055 Numbers with exactly two distinct exponents in their prime factorization, or two distinct parts in their prime signature.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2019

Keywords

Comments

The first term is A006939(2) = 12.
First differs from A059404 in lacking 360, whose prime signature has three distinct parts.
Positions of 2's in A071625.
Numbers k such that A001221(A181819(k)) = 2.
The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} 1/((n-1)*psi(n)) = 0.3611398..., where psi is the Dedekind psi function (A001615) (Sanna, 2020). - Amiram Eldar, Oct 18 2020

Examples

			3000 = 2^3 * 3^1 * 5^3 has two distinct exponents {1, 3}, so belongs to the sequence.
		

Crossrefs

One distinct exponent: A062770 or A072774.
Two distinct exponents: this sequence.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.

Programs

  • Maple
    isA323055 := proc(n)
        local eset;
        eset := {};
        for pf in ifactors(n)[2] do
            eset := eset union {pf[2]} ;
        end do:
        simplify(nops(eset) = 2 ) ;
    end proc:
    for n from 12 to 1000 do
        if isA323055(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 09 2019
  • Mathematica
    Select[Range[100],Length[Union[Last/@FactorInteger[#]]]==2&]