A323055 Numbers with exactly two distinct exponents in their prime factorization, or two distinct parts in their prime signature.
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1
Keywords
Examples
3000 = 2^3 * 3^1 * 5^3 has two distinct exponents {1, 3}, so belongs to the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Carlo Sanna, On the number of distinct exponents in the prime factorization of an integer, Proceedings - Mathematical Sciences, Indian Academy of Sciences, Vol. 130, No. 1 (2020), Article 27, alternative link.
Crossrefs
Programs
-
Maple
isA323055 := proc(n) local eset; eset := {}; for pf in ifactors(n)[2] do eset := eset union {pf[2]} ; end do: simplify(nops(eset) = 2 ) ; end proc: for n from 12 to 1000 do if isA323055(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jan 09 2019
-
Mathematica
Select[Range[100],Length[Union[Last/@FactorInteger[#]]]==2&]
Comments