cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323077 Number of iterations of map x -> (x - (largest divisor d < x)) needed to reach 1 or a prime, when starting at x = n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 2, 0, 1, 2, 3, 0, 3, 0, 2, 2, 1, 0, 3, 3, 1, 4, 2, 0, 3, 0, 4, 2, 1, 3, 4, 0, 1, 2, 3, 0, 3, 0, 2, 4, 1, 0, 4, 4, 4, 2, 2, 0, 5, 3, 3, 2, 1, 0, 4, 0, 1, 4, 5, 3, 3, 0, 2, 2, 4, 0, 5, 0, 1, 5, 2, 4, 3, 0, 4, 6, 1, 0, 4, 3, 1, 2, 3, 0, 5, 4, 2, 2, 1, 3, 5, 0, 5, 4, 5, 0, 3, 0, 3, 5
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

When iteration is started from n, the first noncomposite reached is A006530(n), from which follows the new formula a(n) = A064097(A052126(n)) = A064097(n/A006530(n)), as A064097 is completely additive sequence. - Antti Karttunen, May 15 2020

Crossrefs

Cf. A334198 (positions of the records, also the first occurrence of each n).
Differs from A334201 for the first time at n=169, where a(169) = 5, while A334201(169) = 6.

Programs

  • Mathematica
    Nest[Append[#1, If[PrimeOmega[#2] <= 1, 0, 1 + #1[[Max@ Differences@ Divisors[#2] ]] ]] & @@ {#, Length@ # + 1} &, {}, 105] (* Michael De Vlieger, May 26 2020 *)
  • PARI
    A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1])));
    A323077(n) = if(1>=bigomega(n),0,1+A323077(A060681(n)));

Formula

If A001222(n) <= 1 [when n is 1 or a prime], a(n) = 0, otherwise a(n) = 1 + a(A060681(n)).
a(n) <= A064097(n).
a(n) = A064097(n) - A334202(n) = A064097(A052126(n)). - Antti Karttunen, May 13 2020
a(A334198(n)) = n for all n >= 0. - Antti Karttunen, May 19 2020