A323077 Number of iterations of map x -> (x - (largest divisor d < x)) needed to reach 1 or a prime, when starting at x = n.
0, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 2, 0, 1, 2, 3, 0, 3, 0, 2, 2, 1, 0, 3, 3, 1, 4, 2, 0, 3, 0, 4, 2, 1, 3, 4, 0, 1, 2, 3, 0, 3, 0, 2, 4, 1, 0, 4, 4, 4, 2, 2, 0, 5, 3, 3, 2, 1, 0, 4, 0, 1, 4, 5, 3, 3, 0, 2, 2, 4, 0, 5, 0, 1, 5, 2, 4, 3, 0, 4, 6, 1, 0, 4, 3, 1, 2, 3, 0, 5, 4, 2, 2, 1, 3, 5, 0, 5, 4, 5, 0, 3, 0, 3, 5
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12005
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
Mathematica
Nest[Append[#1, If[PrimeOmega[#2] <= 1, 0, 1 + #1[[Max@ Differences@ Divisors[#2] ]] ]] & @@ {#, Length@ # + 1} &, {}, 105] (* Michael De Vlieger, May 26 2020 *)
-
PARI
A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1]))); A323077(n) = if(1>=bigomega(n),0,1+A323077(A060681(n)));
Formula
a(n) <= A064097(n).
a(A334198(n)) = n for all n >= 0. - Antti Karttunen, May 19 2020
Comments