cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A375706 First differences of non-perfect-powers.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The 5th non-perfect-power is 7, and the 6th is 10, so a(5) = 3.
		

Crossrefs

For prime-powers (A000961) we have A057820.
For perfect powers (A001597) we have A053289.
For nonprime numbers (A002808) we have A073783.
For squarefree numbers (A005117) we have A076259.
First differences of A007916.
For nonsquarefree numbers (A013929) we have A078147.
For non-prime-powers (A024619) we have A375708.
Positions of 1s are A375740, complement A375714.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Differences[Select[Range[100],radQ]]
  • PARI
    up_to = 112;
    A375706list(up_to) = { my(v=vector(up_to), pk=2, k=2, i=0); while(i<#v, k++; if(!ispower(k), i++; v[i] = k-pk; pk = k)); (v); };
    v375706 = A375706list(up_to);
    A375706(n) = v375706[n]; \\ Antti Karttunen, Jan 19 2025
  • Python
    from itertools import count
    from sympy import mobius, integer_nthroot, perfect_power
    def A375706(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return next(i for i in count(m+1) if not perfect_power(i))-m # Chai Wah Wu, Sep 09 2024
    

Formula

a(n) = A007916(n+1) - A007916(n).

Extensions

More terms from Antti Karttunen, Jan 19 2025

A323054 Number of strict integer partitions of n with no 1's such that no part is a power of any other part.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 3, 4, 4, 6, 6, 8, 9, 12, 13, 16, 19, 21, 25, 30, 36, 40, 47, 53, 63, 71, 83, 94, 107, 121, 140, 159, 180, 204, 233, 260, 296, 334, 377, 421, 474, 532, 598, 668, 750, 835, 933, 1038, 1163, 1292, 1435, 1597, 1771, 1966, 2180, 2421, 2673
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			The a(2) = 1 through a(13) = 8 strict integer partitions (A = 10, B = 11, C = 12, D = 13):
  (2)  (3)  (4)  (5)   (6)  (7)   (8)   (9)   (A)    (B)    (C)    (D)
                 (32)       (43)  (53)  (54)  (64)   (65)   (75)   (76)
                            (52)  (62)  (63)  (73)   (74)   (84)   (85)
                                        (72)  (532)  (83)   (A2)   (94)
                                                     (92)   (543)  (A3)
                                                     (632)  (732)  (B2)
                                                                   (643)
                                                                   (652)
		

Crossrefs

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],UnsameQ@@#,stableQ[#,IntegerQ[Log[#1,#2]]&]]&]],{n,30}]

A323090 Number of strict factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 2, 0, 2, 0, 2, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 0, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 7, 1, 2, 2, 0, 2, 5, 1, 2, 2, 5, 1, 4, 1, 2, 2, 2, 2, 5, 1, 2, 0, 2, 1, 7, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			The a(72) = 4 factorizations are (2*3*12), (3*24), (6*12), (72). Missing from this list and not strict are (2*2*2*3*3), (2*2*3*6), (2*6*6), (2*2*18), while missing from the list and using perfect powers are (2*36), (2*4*9), (3*4*6), (4*18), (8*9).
		

Crossrefs

Positions of 0's are A246547.
Positions of 1's are A000040.
Positions of 2's are A084227.
Positions of 3's are A085986.
Positions of 4's are A143610.

Programs

  • Mathematica
    radQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]==1];
    facssr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facssr[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[facssr[n]],{n,100}]

A323089 Number of strict integer partitions of n using 1 and numbers that are not perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 6, 7, 9, 10, 12, 14, 16, 20, 22, 26, 31, 34, 40, 46, 51, 59, 66, 75, 86, 96, 110, 123, 139, 157, 176, 199, 221, 248, 278, 309, 346, 385, 427, 476, 528, 586, 650, 719, 795, 880, 973, 1074, 1186, 1307, 1439, 1584, 1744, 1915, 2104
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			A list of all strict integer partitions using 1 and numbers that are not perfect powers begins:
  1: (1)         8: (5,2,1)      12: (12)         14: (14)
  2: (2)         9: (7,2)        12: (11,1)       14: (13,1)
  3: (3)         9: (6,3)        12: (10,2)       14: (12,2)
  3: (2,1)       9: (6,2,1)      12: (7,5)        14: (11,3)
  4: (3,1)       9: (5,3,1)      12: (7,3,2)      14: (11,2,1)
  5: (5)        10: (10)         12: (6,5,1)      14: (10,3,1)
  5: (3,2)      10: (7,3)        12: (6,3,2,1)    14: (7,6,1)
  6: (6)        10: (7,2,1)      13: (13)         14: (7,5,2)
  6: (5,1)      10: (6,3,1)      13: (12,1)       14: (6,5,3)
  6: (3,2,1)    10: (5,3,2)      13: (11,2)       14: (6,5,2,1)
  7: (7)        11: (11)         13: (10,3)       15: (15)
  7: (6,1)      11: (10,1)       13: (10,2,1)     15: (14,1)
  7: (5,2)      11: (7,3,1)      13: (7,6)        15: (13,2)
  8: (7,1)      11: (6,5)        13: (7,5,1)      15: (12,3)
  8: (6,2)      11: (6,3,2)      13: (7,3,2,1)    15: (12,2,1)
  8: (5,3)      11: (5,3,2,1)    13: (6,5,2)      15: (11,3,1)
		

Crossrefs

Programs

  • Mathematica
    perpowQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1;
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Not/@perpowQ/@#&]],{n,65}]

Formula

O.g.f.: (1 + x) * Product_{n in A007916} (1 + x^n).
Showing 1-4 of 4 results.