cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323093 Number of integer partitions of n where no part is 2^k times any other part, for any k > 0.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 9, 12, 13, 18, 23, 29, 37, 49, 55, 71, 84, 104, 126, 153, 185, 221, 261, 317, 375, 446, 523, 623, 721, 854, 994, 1168, 1357, 1579, 1833, 2126, 2455, 2843, 3270, 3766, 4320, 4980, 5687, 6521, 7444, 8498, 9684, 11039, 12540, 14262
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			The a(1) = 1 through a(8) = 12 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (311)    (51)      (52)       (53)
                    (1111)  (11111)  (222)     (61)       (62)
                                     (3111)    (322)      (71)
                                     (111111)  (331)      (332)
                                               (511)      (611)
                                               (31111)    (2222)
                                               (1111111)  (3311)
                                                          (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],stableQ[#,IntegerQ[Log[2,#1/#2]]&]&]],{n,30}]