cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323099 Number T(n,k) of colored set partitions of [n] where exactly k colors are used for the elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 4, 0, 5, 30, 30, 0, 15, 210, 540, 360, 0, 52, 1560, 7800, 12480, 6240, 0, 203, 12586, 109620, 316680, 365400, 146160, 0, 877, 110502, 1583862, 7366800, 14733600, 13260240, 4420080, 0, 4140, 1051560, 23995440, 169011360, 521640000, 792892800, 584236800, 166924800
Offset: 0

Views

Author

Alois P. Heinz, Aug 30 2019

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,      4;
  0,   5,     30,      30;
  0,  15,    210,     540,     360;
  0,  52,   1560,    7800,   12480,     6240;
  0, 203,  12586,  109620,  316680,   365400,   146160;
  0, 877, 110502, 1583862, 7366800, 14733600, 13260240, 4420080;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000110 (for n>0).
Row sums give A121017.
Main diagonal gives A137341.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(n-j, k)*binomial(n-1, j-1)*k^j, j=1..n))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
    # second Maple program:
    T:= (n, k)-> combinat[bell](n)*Stirling2(n,k)*k!:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-j, k] Binomial[n-1, j-1] k^j, {j, 1, n}]];
    T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten
    (* second program: *)
    T[n_, k_] := BellB[n] StirlingS2[n, k] k!;
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

T(n,k) = Bell(n) * Sum_{i=0..k} (k-i)^n * (-1)^i * C(k,i).
T(n,k) = Bell(n) * A131689(n,k).
T(n,k) = Bell(n) * Stirling2(n,k) * k!.