A323099 Number T(n,k) of colored set partitions of [n] where exactly k colors are used for the elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 4, 0, 5, 30, 30, 0, 15, 210, 540, 360, 0, 52, 1560, 7800, 12480, 6240, 0, 203, 12586, 109620, 316680, 365400, 146160, 0, 877, 110502, 1583862, 7366800, 14733600, 13260240, 4420080, 0, 4140, 1051560, 23995440, 169011360, 521640000, 792892800, 584236800, 166924800
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 2, 4; 0, 5, 30, 30; 0, 15, 210, 540, 360; 0, 52, 1560, 7800, 12480, 6240; 0, 203, 12586, 109620, 316680, 365400, 146160; 0, 877, 110502, 1583862, 7366800, 14733600, 13260240, 4420080; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add( A(n-j, k)*binomial(n-1, j-1)*k^j, j=1..n)) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10); # second Maple program: T:= (n, k)-> combinat[bell](n)*Stirling2(n,k)*k!: seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-j, k] Binomial[n-1, j-1] k^j, {j, 1, n}]]; T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* second program: *) T[n_, k_] := BellB[n] StirlingS2[n, k] k!; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
Formula
T(n,k) = Bell(n) * Sum_{i=0..k} (k-i)^n * (-1)^i * C(k,i).
T(n,k) = Bell(n) * A131689(n,k).
T(n,k) = Bell(n) * Stirling2(n,k) * k!.