A323128 Number T(n,k) of colored set partitions of [n] where elements of subsets have distinct colors and exactly k colors are used; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 4, 0, 1, 18, 30, 0, 1, 74, 360, 360, 0, 1, 310, 3450, 8880, 6240, 0, 1, 1382, 31770, 160080, 271800, 146160, 0, 1, 6510, 298662, 2635920, 8152200, 10190880, 4420080, 0, 1, 32398, 2918244, 42687960, 214527600, 468669600, 460474560, 166924800
Offset: 0
Examples
T(3,2) = 18: 1a|2a3b, 1a|2b3a, 1b|2a3b, 1b|2b3a, 1a3b|2a, 1b3a|2a, 1a3b|2b, 1b3a|2b, 1a2b|3a, 1b2a|3a, 1a2b|3b, 1b2a|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 4; 0, 1, 18, 30; 0, 1, 74, 360, 360; 0, 1, 310, 3450, 8880, 6240; 0, 1, 1382, 31770, 160080, 271800, 146160; 0, 1, 6510, 298662, 2635920, 8152200, 10190880, 4420080; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add(k!/(k-j)! *binomial(n-1, j-1)*A(n-j, k), j=1..min(k, n))) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[k!/(k - j)! Binomial[n - 1, j - 1]* A[n - j, k], {j, Min[k, n]}]]; T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)