cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323173 Sum of divisors computed for conjugated prime factorization: a(n) = A000203(A122111(n)).

Original entry on oeis.org

1, 3, 7, 4, 15, 12, 31, 6, 13, 28, 63, 18, 127, 60, 39, 8, 255, 24, 511, 42, 91, 124, 1023, 24, 40, 252, 31, 90, 2047, 72, 4095, 12, 195, 508, 120, 32, 8191, 1020, 403, 56, 16383, 168, 32767, 186, 93, 2044, 65535, 36, 121, 78, 819, 378, 131071, 48, 280, 120, 1651, 4092, 262143, 96, 524287, 8188, 217, 14, 600, 360, 1048575, 762, 3315, 234
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A122111[n_] := Product[Prime[Sum[If[j < i, 0, 1], {j, #}]], {i, Max[#]}]&[ Flatten[Table[Table[PrimePi[f[[1]]], {f[[2]]}], {f, FactorInteger[n]}]]];
    a[n_] := With[{k = A122111[n]}, DivisorSigma[1, k]];
    Array[a, 70] (* Jean-François Alcover, Sep 23 2020 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A323173(n) = sigma(A122111(n));

Formula

a(n) = A000203(A122111(n)).
a(n) = 2*A122111(n) - A323174(n).
a(n) = A322819(n) * A038712(A122111(n)).