cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323190 Integers k for which there exists an integer j such that s(k) + j + reversal(s(k) + j) = k where s(k) is the sum of digits of k.

Original entry on oeis.org

0, 10, 11, 12, 14, 16, 18, 22, 33, 44, 55, 66, 77, 88, 99, 101, 110, 121, 132, 141, 143, 154, 161, 165, 176, 181, 187, 198, 201, 202, 221, 222, 241, 242, 261, 262, 281, 282, 302, 303, 322, 323, 342, 343, 362, 363, 382, 383, 403, 404, 423, 424, 443, 444, 463
Offset: 1

Views

Author

Viorel Nitica, Jan 06 2019

Keywords

Comments

Theorem: all palindromes that have an even number of digits and all palindromes that have an odd number of digits and the digit in the middle is even are in this sequence.

Examples

			k=10 is a term because a solution exists with j=4: s(10)=1, s(k) + j + reversal(s(k) + j) = 1 + 4 + reversal(1 + 4) = 10.
		

Crossrefs

Cf. A007953 (sum of digits), A004086 (reversal).
A305130 is a subsequence.
This sequence is a subsequence of A067030.

Programs

  • Java
    package com.company;
    public class Main {
    public static void main(String args[]) {
    int counter=1;
    for (int i = 0; i < 10000; i++) {
    for (int j = 0; j < 10000; j++) {
    int sumPlus = sumDigits(i) + j;
    int check = sumPlus + reverse(sumPlus);
    if (check == i) {
    System.out.println(String.format("n(%d)=%d,a=%d", counter,i, j));
    counter++;
    break;
    }
    }
    }
    System.out.println(String.format("%d", counter));
    }
    public static int reverse(int x) {
    String s = String.valueOf(x);
    StringBuilder sb = new StringBuilder();
    sb.append(s);
    sb.reverse();
    return Integer.parseInt(sb.toString());
    }
    public static int sumDigits(int x) {
    int result = 0;
    while (x > 0) {
    result += x % 10;
    x = x / 10;
    }
    return result;
    }
    }
  • Mathematica
    ok[n_] := Block[{s = Total@ IntegerDigits@ n}, Select[Range[0, n], s + # + FromDigits@ Reverse@ IntegerDigits[s + #] == n &, 1] != {}]; Select[ Range[0, 1000], ok] (* Giovanni Resta, Feb 19 2019 *)

Extensions

a(30)-a(55) from Giovanni Resta, Feb 19 2019