A323190 Integers k for which there exists an integer j such that s(k) + j + reversal(s(k) + j) = k where s(k) is the sum of digits of k.
0, 10, 11, 12, 14, 16, 18, 22, 33, 44, 55, 66, 77, 88, 99, 101, 110, 121, 132, 141, 143, 154, 161, 165, 176, 181, 187, 198, 201, 202, 221, 222, 241, 242, 261, 262, 281, 282, 302, 303, 322, 323, 342, 343, 362, 363, 382, 383, 403, 404, 423, 424, 443, 444, 463
Offset: 1
Examples
k=10 is a term because a solution exists with j=4: s(10)=1, s(k) + j + reversal(s(k) + j) = 1 + 4 + reversal(1 + 4) = 10.
Links
- Viorel Niţică, Jeroz Makhania, About the Orbit Structure of Sequences of Maps of Integers, Symmetry (2019), Vol. 11, No. 11, 1374.
Crossrefs
Programs
-
Java
package com.company; public class Main { public static void main(String args[]) { int counter=1; for (int i = 0; i < 10000; i++) { for (int j = 0; j < 10000; j++) { int sumPlus = sumDigits(i) + j; int check = sumPlus + reverse(sumPlus); if (check == i) { System.out.println(String.format("n(%d)=%d,a=%d", counter,i, j)); counter++; break; } } } System.out.println(String.format("%d", counter)); } public static int reverse(int x) { String s = String.valueOf(x); StringBuilder sb = new StringBuilder(); sb.append(s); sb.reverse(); return Integer.parseInt(sb.toString()); } public static int sumDigits(int x) { int result = 0; while (x > 0) { result += x % 10; x = x / 10; } return result; } }
-
Mathematica
ok[n_] := Block[{s = Total@ IntegerDigits@ n}, Select[Range[0, n], s + # + FromDigits@ Reverse@ IntegerDigits[s + #] == n &, 1] != {}]; Select[ Range[0, 1000], ok] (* Giovanni Resta, Feb 19 2019 *)
Extensions
a(30)-a(55) from Giovanni Resta, Feb 19 2019
Comments