A323203 "Primitive" numbers k such that k divides 4^k - 1.
1, 3, 21, 147, 171, 657, 903, 1029, 1197, 2667, 3249, 4599, 6321, 7077, 7203, 8379, 12483, 13203, 18669, 22743, 32193, 38829, 44247, 47961, 49539, 50421, 51471, 58653, 61731, 71631, 87381, 92421, 97641, 113799, 114681, 118341, 130683, 152019, 159201, 197757
Offset: 1
Examples
3 is a term because 3 * 21 = 4^3 - 1. 63 divides 4^63 - 1, but 63 is not a term because 63 = 3 * 21 with 3 which divides 4^3 - 1, and 21 which divides 4^21 - 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..3200
Programs
-
Maple
filter:= proc(n) local d; if 4 &^ n - 1 mod n <> 0 then return false fi; for d in select(t -> t > 1 and t^2 <= n, numtheory:-divisors(n)) do if 4 &^ d - 1 mod d = 0 and 4 &^ (n/d) - 1 mod (n/d) = 0 then return false fi; od; true end proc: select(filter, [$1..200000]); # Robert Israel, Jan 24 2019
-
PARI
is(n) = my(d=divisors(n)); if(Mod(4,n)^n != 1, return(0)); for(i = 2, (#d - 1) >> 1 + 1, if(Mod(4,d[i]) ^ d[i] == 1 && Mod(4, n/d[i]) ^ (n/d[i])==1, return(0))); 1 first(n) = n = max(n, 2); my(res = vector(n), t=1); res[1] = 1;forstep(i = 3, oo, 3, if(is(i), t++; res[t] = i; if(t==n, return(res)))) \\ David A. Corneth, Jan 11 2019
Extensions
More terms (using b-file for A014945) from Jon E. Schoenfield, Jan 11 2019
Terms verified by Jon E. Schoenfield and David A. Corneth, Jan 12 2019
Comments