cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323212 The Fibonacci-Catalan Hybrid. Expansion of 1 + x*(2*(x + 1))/(sqrt(1 - 4*y) - 2*x*(x + 1) + 1). Square array read by descending antidiagonals, A(n,k) for n,k >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 3, 3, 0, 5, 7, 7, 5, 0, 14, 19, 19, 15, 8, 0, 42, 56, 56, 46, 30, 13, 0, 132, 174, 174, 146, 103, 58, 21, 0, 429, 561, 561, 477, 351, 220, 109, 34, 0, 1430, 1859, 1859, 1595, 1205, 801, 453, 201, 55, 0, 4862, 6292, 6292, 5434, 4180, 2884, 1756, 908, 365, 89
Offset: 0

Views

Author

Peter Luschny, Feb 14 2019

Keywords

Examples

			      1,   0,    0,    0,     0,      0,      0,       0,       0, ...
      1,   1,    2,    5,    14,     42,    132,     429,    1430, ... [A000108]
      2,   3,    7,   19,    56,    174,    561,    1859,    6292, ... [A005807]
      3,   7,   19,   56,   174,    561,   1859,    6292,   21658, ... [A005807]
      5,  15,   46,  146,   477,   1595,   5434,   18798,   65858, ...
      8,  30,  103,  351,  1205,   4180,  14651,   51844,  185028, ...
     13,  58,  220,  801,  2884,  10372,  37401,  135420,  492558, ...
     21, 109,  453, 1756,  6621,  24674,  91532,  339184, 1257762, ...
     34, 201,  908, 3734, 14719,  56796, 216698,  821848, 3107583, ...
     55, 365, 1781, 7746, 31872, 127245, 499164, 1937439, 7470819, ...
A000045,A023610,...
Seen as a triangle a refinement of A000958:
[0]                                1
[1]                              0, 1
[2]                            0, 1, 2
[3]                           0, 2, 3, 3
[4]                         0, 5, 7, 7, 5
[5]                      0, 14, 19, 19, 15, 8
[6]                   0, 42, 56, 56, 46, 30, 13
[7]               0, 132, 174, 174, 146, 103, 58, 21
[8]            0, 429, 561, 561, 477, 351, 220, 109, 34
[9]       0, 1430, 1859, 1859, 1595, 1205, 801, 453, 201, 55
		

Crossrefs

Antidiagonal sums (or row sums of the triangle) are A000958.

Programs

  • Maple
    gf := 1 + x*(2*(x + 1))/(sqrt(1 - 4*y) - 2*x*(x + 1) + 1):
    serx := series(gf, x, 20): sery := n -> series(coeff(serx, x, n), y, 20):
    row := n -> seq(coeff(sery(n), y, j), j=0..9):
    seq(lprint(row(n)), n=0..9);
  • Mathematica
    m = 11; T = PadRight[CoefficientList[#+O[y]^m, y], m]& /@ CoefficientList[1 + 2x(x+1)/(Sqrt[1-4y] - 2x(x+1) + 1) + O[x]^m, x]; Table[T[[n-k+1, k]], {n, 1, m}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 20 2019 *)