cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323230 a(n) = binomial(2*(n - 1), n - 1) + 1.

Original entry on oeis.org

1, 2, 3, 7, 21, 71, 253, 925, 3433, 12871, 48621, 184757, 705433, 2704157, 10400601, 40116601, 155117521, 601080391, 2333606221, 9075135301, 35345263801, 137846528821, 538257874441, 2104098963721, 8233430727601, 32247603683101, 126410606437753, 495918532948105
Offset: 0

Views

Author

Peter Luschny, Feb 12 2019

Keywords

Crossrefs

Compare to A244174 which is "missing" the second term 2.
Cf. A000108.

Programs

  • Magma
    [1] cat [1 + n*Catalan(n-1): n in [1..30]]; // G. C. Greubel, Dec 09 2021
    
  • Maple
    aList := proc(len) local gf, ser; assume(Im(x)<0);
    gf := -1/(x-1) - I*x/sqrt(4*x-1); ser := series(gf, x, len+2):
    seq(coeff(ser, x, n), n=0..len) end: aList(27);
    # Alternative:
    a := proc(n) option remember;
    if n < 2 then [1, 2][n+1] else ((4*n - 6)*a(n - 1) - 3*n + 5)/(n - 1) fi end:
    seq(a(n), n=0..27); # Peter Luschny, Aug 02 2019
  • Mathematica
    Table[Binomial[2(n - 1), n - 1] + 1, {n, 0, 27}]
  • PARI
    a(n)=binomial(2*n-2, n-1)+1 \\ Charles R Greathouse IV, Oct 23 2023
  • Sage
    [1 + binomial(2*n-2, n-1) for n in (0..30)] # G. C. Greubel, Dec 09 2021
    

Formula

Let G(x) = -1/(x - 1) - I*x/sqrt(4*x - 1) with Im(x) < 0, then a(n) = [x^n] G(x).
The generating function G(x) satisfies the differential equation 6*x^2 - 4*x + 1 = (4*x^4 - 9*x^3 + 6*x^2 - x)*diff(G(x), x) - (2*x^3 - 5*x^2 + 4*x - 1)*G(x).
a(n) = ((4*n - 6)*a(n - 1) - 3*n + 5)/(n - 1) for n >= 2. - Peter Luschny, Aug 02 2019
From G. C. Greubel, Dec 09 2021: (Start)
a(n) = 1 + n*A000108(n-1).
E.g.f.: exp(x) + x*exp(2*x)*(BesselI[0, 2*x] - BesselI[1, 2*x]). (End)