cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323233 Coefficients of polynomials p(n, x) generating the columns of A323224, triangle read by rows, T(n, k) for n >= 1 and k >= 0.

Original entry on oeis.org

1, 2, 2, 6, 15, 3, 24, 140, 48, 4, 120, 1750, 775, 110, 5, 720, 28644, 14550, 2670, 210, 6, 5040, 588588, 323008, 68775, 7105, 357, 7, 40320, 14592864, 8388800, 1962632, 239120, 16016, 560, 8, 362880, 423227376, 250742700, 62531532, 8502921, 680904, 32130, 828, 9
Offset: 1

Views

Author

Peter Luschny, Jan 27 2019

Keywords

Examples

			The triangle starts:
[ 1]       1;
[ 2]       2,         2;
[ 3]       6,        15,         3;
[ 4]      24,       140,        48,        4;
[ 5]     120,      1750,       775,      110,       5;
[ 6]     720,     28644,     14550,     2670,     210,      6;
[ 7]    5040,    588588,    323008,    68775,    7105,    357,     7;
[ 8]   40320,  14592864,   8388800,  1962632,  239120,  16016,   560,   8;
[ 9]  362880, 423227376, 250742700, 62531532, 8502921, 680904, 32130, 828, 9;
The first few polynomials are:
p[1](x) = 1;
p[2](x) = 2*x + 2!;
p[3](x) = 3*x*(x + 5) + 3!;
p[4](x) = 4*x*(x + 5)*(x + 7) + 4!;
p[5](x) = 5*x*(x + 5)*(x + 7)*(x + 10) + 5!;
p[6](x) = 6*x*(x + 7)*(x + 11)*(x^2 + 17*x + 62) + 6!;
p[7](x) = 7*x*(x + 6)*(x + 7)*(x + 11)*(x + 13)*(x + 14) + 7!;
		

Crossrefs

Programs

  • Mathematica
    ogf[n_] := (2/(1 + Sqrt[1 - 4 x] ))^n  x/(1 - x);
    ser[n_, len_] := CoefficientList[Series[ogf[n], {x, 0, (n + 1) len + 1}], x];
    tab[k_, len_] := Table[{n, ser[n, k + 1][[k + 1]]}, {n, 0, len - 1}];
    pol[n_] := n! InterpolatingPolynomial[tab[n, n + 1], x] // Expand;
    row[n_] := CoefficientList[pol[n], x]; Table[row[n], {n, 1, 9}]

Formula

A323224(n, k) = p(k, n)/k!.
T(n, k) = [x^k] p(n, x).
p(n, 1)/n! and p(n, -1)/n! are versions of the partial sums of the Catalan numbers.