A323233 Coefficients of polynomials p(n, x) generating the columns of A323224, triangle read by rows, T(n, k) for n >= 1 and k >= 0.
1, 2, 2, 6, 15, 3, 24, 140, 48, 4, 120, 1750, 775, 110, 5, 720, 28644, 14550, 2670, 210, 6, 5040, 588588, 323008, 68775, 7105, 357, 7, 40320, 14592864, 8388800, 1962632, 239120, 16016, 560, 8, 362880, 423227376, 250742700, 62531532, 8502921, 680904, 32130, 828, 9
Offset: 1
Examples
The triangle starts: [ 1] 1; [ 2] 2, 2; [ 3] 6, 15, 3; [ 4] 24, 140, 48, 4; [ 5] 120, 1750, 775, 110, 5; [ 6] 720, 28644, 14550, 2670, 210, 6; [ 7] 5040, 588588, 323008, 68775, 7105, 357, 7; [ 8] 40320, 14592864, 8388800, 1962632, 239120, 16016, 560, 8; [ 9] 362880, 423227376, 250742700, 62531532, 8502921, 680904, 32130, 828, 9; The first few polynomials are: p[1](x) = 1; p[2](x) = 2*x + 2!; p[3](x) = 3*x*(x + 5) + 3!; p[4](x) = 4*x*(x + 5)*(x + 7) + 4!; p[5](x) = 5*x*(x + 5)*(x + 7)*(x + 10) + 5!; p[6](x) = 6*x*(x + 7)*(x + 11)*(x^2 + 17*x + 62) + 6!; p[7](x) = 7*x*(x + 6)*(x + 7)*(x + 11)*(x + 13)*(x + 14) + 7!;
Programs
-
Mathematica
ogf[n_] := (2/(1 + Sqrt[1 - 4 x] ))^n x/(1 - x); ser[n_, len_] := CoefficientList[Series[ogf[n], {x, 0, (n + 1) len + 1}], x]; tab[k_, len_] := Table[{n, ser[n, k + 1][[k + 1]]}, {n, 0, len - 1}]; pol[n_] := n! InterpolatingPolynomial[tab[n, n + 1], x] // Expand; row[n_] := CoefficientList[pol[n], x]; Table[row[n], {n, 1, 9}]
Formula
A323224(n, k) = p(k, n)/k!.
T(n, k) = [x^k] p(n, x).
p(n, 1)/n! and p(n, -1)/n! are versions of the partial sums of the Catalan numbers.